
CHARACTERIZATION OF HYPERSTABILITY
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Abstract. A component of the equilibria of a finite game is hyperstable if and only if its index is nonzero.

1. Introduction

A cornerstone of the theory of games is the concept of equilibrium proposed by Nash (1950). Nash’s

definition requires that each player’s strategy should be an optimal reply to other players’ strategies. This

minimal requirement does not generate a complete theory of rational play since most games have multiple

equilibria. However, for applications in economics and other social sciences, some equilibria seem to be

more plausible predictors of behavior than others. Selten (1965, 1975) initiated the study of equilibrium

refinements; i.e., auxiliary criteria that select subsets of a game’s equilibria with stronger properties. Hillas

and Kohlberg (2002) survey the main proposals for strengthening Nash’s definition by imposing additional

criteria.

One of the most stringent criteria is hyperstability, proposed by Kohlberg and Mertens (1986) [KM

hereafter]. Hyperstability requires a kind of continuity with respect to perturbations of players’ payoffs in

strategically equivalent games. Continuity is evidently necessary in applications–it would be unrealistic

to suppose that decisions depend on infinitely precise specifications of payoffs, or in empirical studies, that

structural estimation of an econometric model of interactions among firms could rely on fragile theoretical

predictions. However, continuity is not the fundamental motivation. KM show that hyperstability and its

weaker variants full stability and stability (which induce payoff perturbations by perturbing players’ strate-

gies) imply decision-theoretic principles considered desirable for an axiomatic characterization of rational

behavior in strategic interactions.

Hyperstability invokes two such principles. The first, called Invariance, requires that equilibrium selection

should be immune to treating a mixed strategy as an additional pure strategy. As an axiom, Invariance rules

out presentation effects by requiring that equivalent equilibria are selected in equivalent games. The second,

called Stability, requires that every nearby game should have a nearby equilibrium. Stability is invoked to

obtain properties such as consistency with the results of iterative elimination of dominated strategies, and

backward induction in games in extensive form. In particular, optimal strategies for continuation from an

information set off the path of equilibrium play requires some theory of how such a contingency could occur.

Consideration of perturbed payoffs or strategies provides one class of such theories, and other theories, such
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as sequential equilibrium and lexicographic equilibrium (Blume, Brandenberger, and Dekel, 1991), can be

cast in terms of perturbations either as limits or by using techniques of nonstandard analysis.

The principles of Invariance and Stability are applied as follows to obtain the definition of hyperstability.

• Equivalence. The relation of equivalence between games is defined as follows. First, say that two

strategies of one player are equivalent if for every profile of other players’ strategies they yield the same

payoff for every player. A pure strategy of a player is redundant if that player has another pure or mixed

strategy that is equivalent. From a game G one obtains its reduced form G∗ by deleting redundant
pure strategies until none remain. The reduced form is unique apart from the payoff-irrelevant names

of the remaining pure strategies. Two games G and G0 are equivalent if their reduced forms are the
same; viz., G∗ = G0∗. If σ is a profile of players’ strategies in a game G then its reduced form σ∗ is the
profile of equivalent strategies in the reduced form G∗.

• Hyperstability. A subset of equilibria in reduced form is hyperstable if every sufficiently small

perturbation of every equivalent game has an equilibrium whose reduced form is arbitrarily near the

subset. That is, a subset E of the equilibria of a game G is hyperstable if for every ε > 0 there exists

δ > 0 such that every perturbation G00 of a game G0 equivalent to G for which kG00 −G0k 6 δ has an

equilibrium σ00 such that kσ00∗ − σ∗k 6 ε for some equilibrium σ ∈ E.1

Of special importance are the subsets that are components; i.e., maximal connected sets of equilibria.

Kohlberg and Mertens (1986, Proposition 1) prove that for every game its equilibria are divided into a

finite number of components, of which at least one is hyperstable.

From the definition of hyperstability one might suppose that verifying whether a component is hyperstable

is a formidable challenge. However, our purpose here is to establish that hyperstability is a purely topological

property. Moreover, there is a computable topological invariant, called the index of the component, that

precisely characterizes whether a component is hyperstable. Recall that an equilibrium of a game can be

characterized as a fixed point of a map from the space of mixed-strategy profiles into itself; for example, Nash

(1951) and Gül, Pearce, and Stacchetti (1993) specify two such maps. In the theory of algebraic topology a

set of axioms characterizes an assignment of an integer to each component of the fixed points of maps (Dold,

1972, VII.5). This integer is called the index of the component. It is known, moreover, that the indices

of the components of the equilibria of a game are independent of the map used to characterize equilibria

(DeMichelis and Germano, 2000; Govindan and Wilson, 1998); indeed, in Section A.1 of the Appendix we

define an index that depends only on the best-reply correspondence, which is intrinsic to each game regardless

of which map might be used to characterize equilibria as fixed points. For every game the sum of the indices

of the components of its equilibria is +1 (Gül, Pearce, and Stacchetti, 1993; Kohlberg and Mertens, 1986,

Theorem 1). The index is invariant under addition or deletion of redundant strategies (Govindan and Wilson,

1997, and Theorem A.3 here); in particular, the index of a component C of the equilibria of a game G is the

same as the index of the component C∗ in equivalent strategies of the game’s reduced form G∗.
The index of a component can be computed as the sum of the indices of the nearby equilibria of any

sufficiently nearby game. If this nearby game is generic then each equilibrium is a singleton component and

its index can be computed as the sign (+1 or −1) of the determinant of a Jacobian matrix. Gül, Pearce, and

1We use `∞ norm throughout.
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Stacchetti (1993) describe one formulation and alternatives are described in Govindan and Wilson (2002a)

for games in normal form and in Govindan and Wilson (2002b) for games in extensive form.

Our main theorem is the following generalization of a result established by von Schemde (2004) for 2-player

outside-option games:

Theorem 1.1. A component of the equilibria of a game is hyperstable if and only if its index is nonzero.

Thus the equilibrium refinement that selects the hyperstable components is characterized by the property

that it selects those components whose indices are nonzero. Even though the definition of hyperstability

considers every perturbation of every equivalent game, one verifies hyperstability of a component simply by

computing its index and verifying that it is nonzero.

The restriction to components of equilibria is immaterial for games derived from an extensive form with

perfect recall and generic payoffs since for such games all equilibria in a component induce the same probabil-

ity distribution over outcomes; i.e., they differ only off the path of equilibrium play (Kreps and Wilson, 1982;

Govindan and Wilson, 2001a). One can derive subsets of a hyperstable component with stronger properties;

e.g., to ensure that the equilibria selected use only admissible pure strategies, KM focus on minimal closed

subsets that are either fully stable or stable depending on the class of strategy perturbations considered.

Especially useful is the series of facts established by KM: (a) strategy perturbations induce payoff pertur-

bations so a hyperstable component necessarily contains subsets that are fully stable and stable; (b) a fully

stable subset contains a proper equilibrium as defined by Myerson (1978); (c) a proper equilibrium induces

a sequential equilibrium, as defined by Kreps and Wilson (1982), in every extensive form with that normal

form, and thus implements the principle of backward induction. Alternatively, Govindan and Wilson (2004)

show that two axioms imply that a selected set of equilibria should contain a stable subset: (1) invariance

and (2) the requirement that each perturbation of players’ strategies should induce a further refinement by

selecting among the quasi-perfect equilibria, as defined by van Damme (1984). Like a proper equilibrium,

a quasi-perfect equilibrium of an extensive-form game induces a sequential equilibrium that does not use

weakly dominated strategies. All these desirable properties are implied by the revised (and seemingly much

stronger) definition of stability proposed by Mertens (1989). Mertens invokes as part of his definition a

stringent topological property akin to the conclusion of Theorem 1.1. One interpretation of our result is

that it is much simpler and vastly easier computationally to select a hyperstable component, and then from

that component select a subset or a single equilibrium with additional desirable properties, as advocated

by Wilson (1997). Another approach, fully implemented only for generic extensive-form games with perfect

information, is exemplified by Aumann’s (1995) result that common knowledge of rationality implies that

the outcome of a game is the one predicted by subgame perfection, as defined by Selten (1965); namely, the

unique outcome of all the equilibria in the only component that is hyperstable.

Section 2 establishes notation. For the general reader, the main ideas in the proof are outlined in Section

3 for the case of 2 players. Theorem 1.1 for the general case is proved in Section 4. In Section 5 we comment

on the implications of our result for Mertens’ stronger definition of stability. Appendices A and B provide

tools used in the text. Appendix C reports a numerical example.
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2. Formulation

We consider games with a finite set N of players, |N | > 2. Each player n ∈ N has a finite set Sn of pure

strategies. Interpret a pure strategy sn as a vertex of player n’s simplex Σn = ∆(Sn) of mixed strategies.

The sets of profiles of pure and mixed strategies are S =
Q
n Sn and Σ =

Q
nΣn. When focusing on a player

n, we use S−n =
Q
m6=n Sm and Σ−n =

Q
m6=nΣm to denote profiles of the other players’ pure and mixed

strategies.

Given N and S, each game G is described by its payoff function Ĝ : S → RN from profiles of pure

strategies to payoffs for each of the players. Thus a game is specified by a point in the Euclidean space

RS×N . We use G to denote the multilinear extension of Ĝ from profiles of mixed strategies to players’

expected payoffs. In particular, player n’s expected payoffs from his pure strategies are specified by the map

Gn : Σ−n → RSn , where

Gns(σ) =
X
t∈S−n

Ĝn(s, t)
Y
m6=n

σm(tm)

for each pure strategy s ∈ Sn and profile σ ∈ Σ. Note that Gn depends only on the profile σ−n ∈ Σ−n of
other players’ mixed strategies. The corresponding best-reply correspondence is

BR(σ0) = {σ ∈ Σ | (∀ n)(∀ τn ∈ Σn) σ0nGn(σ0−n) > τ 0nGn(σ
0
−n)} .

A profile σ ∈ Σ of mixed strategies is an equilibrium of the game G if each player’s strategy σn is an

optimal reply to the other players’ strategies; that is, [τn − σn]
0Gn(σ) 6 0 for all τn ∈ Σn. An equilibrium

component is a maximal connected set of equilibria, and thus compact. Equilibria can be characterized

as fixed points of a map Φ : Σ → Σ as follows (Gül, Pearce, and Stacchetti, 1993). Let rn : RSn → Σn

be the piecewise-affine function that is the retraction mapping each point in RSn to the point of Σn that
is nearest in Euclidean distance; i.e., rn(zn) is the unique solution r ∈ Σn to the variational inequality

[τn − r]0[zn − r] 6 0 for all τn ∈ Σn (actually, it suffices to consider only the finite number of pure strategies
τn ∈ Sn). Let Z =

Q
nRSn and define r : Z → Σ via r(z)n = rn(zn) for each player n. Also define

w : Σ → Z via w(σ) = σ + G(σ). Then the above definition translates to the alternative definition that

σ is an equilibrium if and only if σ = [r ◦ w](σ). Hence the equilibria of G are precisely the fixed points

of the map Φ ≡ r ◦ w : Σ → Z → Σ. Its commuted version is F ≡ w ◦ r : Z → Σ → Z. The sets of
fixed points of Φ and F are homeomorphic: σ = r(z) is a fixed point of Φ iff z = w(σ) is a fixed point

of F . In this formulation, the topological index of a component C is the integer that is the local degree

of Φ’s displacement map ϕ(σ) ≡ σ − Φ(σ), restricted to any small neighborhood of C disjoint from other

components. Similarly, D = w(C) is the corresponding component of fixed points of F and its index is the

local degree of F ’s displacement map f : Z → Z, f(z) = z − F (z). The indices of C and D are the same

(Dold, 1972, VII.5.9).

A restricted class of payoff perturbations of a gameG perturbs each player’s payoffs from his pure strategies

independently of other players’ behaviors. For each g ∈ Z define the perturbed game G⊕g by (G⊕g)n(σ) =
Gn(σ) + gn. Let EG = {(g,σ) ∈ Z × Σ | σ is an equilibrium of G ⊕ g} be the graph of equilibria over this
class of perturbations. KM’s Theorem 1 implies that the map θ : EG → Z, θ(g,σ) = σ + G(σ) + g, is a

homeomorphism; in particular, θ−1(z) = (f(z), r(z)). Consequently, f = p1 ◦ θ−1, where p1 : EG → Z,
p1(g,σ) = g, is the projection to the first coordinate. Using an appropriate orientation of EG, the degree of
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θ−1 is +1. Since the degree of a composition of maps is the product of their degrees, the local degree of f
is same as the local degree of the projection map p1. Hence the index of a component C of G is the same

as the degree of the projection map p1 on any sufficiently small neighborhood of (0, C) in the graph EG. As
mentioned, Section A.1 presents an alternative definition of the index that depends only on the best-reply

correspondence BR.

As described in Section 1, a profile σ ∈ Σ for the game G induces an equivalent profile σ∗ ∈ Σ∗ of G’s
reduced form G∗. Let An be the matrix whose columns are the pure strategies in Sn represented as mixed
strategies in Σ∗n. Then σ∗n = Anσn and Gn(σ) = A0nG∗n(σ∗). A profile σ ∈ Σ is an equilibrium of G if and

only if the equivalent profile σ∗ = (Anσn)n∈N is an equilibrium of G∗.
The properties of simplicial approximations used below are developed in Spanier (1966, Chapter 3) and

in Section A.2 of the Appendix.

3. Sketch of the Proof for 2 Players

Because the proof of Theorem 1.1 in Section 4 is long and notationally complicated, in this section we

sketch the key ideas for the special case of a component of the symmetric equilibria of a symmetric game

with 2 players. (The properties of the index can be specialized to components of the symmetric equilibria of

symmetric games.) Such a game is described by a single square matrix G = (Gss0), where Gss0 is the payoff

to the “row” player who chooses the pure strategy s when the “column” player chooses the pure strategy s0.
Interpreted for a symmetric game, the main complication in Theorem 4.2 involves establishing a general-

ization of the following fact. Suppose that the component C∗ of the symmetric equilibria of a game G∗ in
reduced form has index zero, and let U∗ be a closed neighborhood of C∗ that contains no other equilibria of
G∗. Then there exists a map g from Σ∗ to an arbitrarily small neighborhood V of the origin in RS∗ such
that no strategy σ∗ ∈ U∗ is a symmetric equilibrium of the perturbed game G∗ ⊕ g(σ∗). Here we assume
that such a map exists and illustrate the remainder of the proof that C∗ is not hyperstable. This requires
construction of an equivalent symmetric game G and a perturbation of G that has no symmetric equilibrium

whose reduced form is in U∗.
Without loss of generality, g can be assumed to be a simplicial map using sufficiently fine simplicial

subdivisions of Σ∗ and V – that is, simplices in the domain are mapped linearly by g to simplices in the

range. As in Section B.2 of the Appendix, refine the simplicial subdivision of Σ∗ to obtain a polyhedral
subdivision for which there is a convex function γ : Σ∗ → R with the property that γ is linear on precisely
the polyhedra of the subdivision. For the equivalent game G let the set S of pure strategies for each player

be the set P of vertices of this polyhedral subdivision, and let A be the |S∗| × |P | matrix whose columns are
the vertices in P represented as points in Σ∗. Then G = A0G∗A is the payoff matrix for a symmetric 2-player
game whose reduced form is G∗. The component of its symmetric equilibria that reduce to ones in C∗ is
C = {σ ∈ Σ | Aσ ∈ C∗} and similarly the corresponding neighborhood is U = {σ ∈ Σ | Aσ ∈ U∗}. Define the
matrix B whose column indexed by p ∈ P is g(p). Then the game whose payoff matrix is G0 = A0G∗A+A0B
is a perturbation of G. If the scalar α is sufficiently small then so too is the game Gα = A0[G∗A+B]⊕ αc,
where cp = −γ(p) for each p ∈ P .
We claim that if α > 0 then a symmetric equilibrium of Gα assigns positive probability only to vertices

of a polyhedron in the subdivision. To see this, observe that for each strategy of the column player the row

player’s payoff in G0 is the same for any two strategies σ, τ ∈ Σ with the same reduced form. Hence, in Gα
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with α > 0, if Aσ = Aτ then σ is an optimal reply for the row player only if σ0[αc] > τ 0[αc]. Thus, σ is an
optimal reply only if σ ∈ argminτ∈Σ{

P
p∈P γ(p)τ(p) | Aτ = Aσ}. Since γ is convex, and linear on precisely

the polyhedra of the subdivision, the support of any solution of this linear programming problem is a subset

of the vertices of the polyhedron P (σ∗) that contains the reduced form σ∗ = Aσ. In particular, if σ is a

symmetric equilibrium of Gα then its support is a subset of the vertices of P (σ∗). Note further that P (σ∗)
is contained in the simplex Σ(σ∗) of the simplicial subdivision of Σ∗ that contains σ∗; therefore the support
of an equilibrium σ is a subset of Σ(σ∗). Since g is linear on this simplex, g(σ∗) = Bσ.
Now suppose to the contrary that C∗ is hyperstable. Then for each α in a sequence shrinking to zero each

game Gα has a symmetric equilibrium σα whose reduced form σα∗ = Aσα is in U∗ and for which g(σα∗ ) = Bσα.
Then the game G0 has a symmetric equilibrium σ that is the limit of a convergent subsequence, and it

inherits the properties that σ∗ = Aσ ∈ U∗ and g(σ∗) = Bσ. By definition of a symmetric equilibrium,

[τ − σ]0A0[G∗A+ B]σ 6 0 for all τ ∈ Σ. Therefore [τ∗ − σ∗]0[G∗σ∗ + g(s∗)] 6 0 for all τ∗ = Aτ ∈ Σ∗. Thus
σ∗ ∈ U∗ is a symmetric equilibrium of the game G∗ ⊕ g(σ∗). But this contradicts the fact about g stated
above. Thus, if C∗ has index zero then it is not hyperstable.
The proofs in Section 4 address the general case of asymmetric games with two or more players. The

sketch above corresponds to Step 3 of the proof of Theorem 4.2, which follows the proof in Steps 1 and 2

that an analogous map g exists when the component has index zero.

4. Proof of the Main Theorem

We now prove the two parts of Theorem 1.1 for the general case of games with an arbitrary number

of players. Theorem 4.1 extends to the entire class of equivalent games the implication of nonzero index

established by Ritzberger (1994).

Theorem 4.1. An equilibrium component is hyperstable if its index is nonzero.

Proof. It suffices to suppose that the game G is in reduced form. Let C be a component of the equilibria of

G. Suppose that the index of C is nonzero, say d 6= 0. We show that C is hyperstable. Let U be an open

neighborhood of C whose closure includes no other equilibria of G. Because no strategy in the boundary

∂U is an equilibrium, δ̄ > 0 where δ̄ = minσ∈∂U [maxn∈N,s∈Sn Gn,s(σ−n) − σ0nGn(σ−n)]. Let G∗ be a game
whose reduced form is G, and let C∗ be the equilibrium component of G∗ whose reduced form is C. Let

E∗ be the graph of the equilibrium correspondence over the space of games with the same set of strategies

as in G∗. Choose any δ ∈ (0, δ̄/2) and let B∗ be the open ball around G∗ with radius δ. Let U∗ ⊃ C∗

be the set of mixed strategies of G∗ that reduce to strategies in U ; note that a profile in ∂U∗ reduces to a
profile in ∂U . Then V ∗ = E∗ ∩ (B∗ × U∗) is a neighborhood of (G∗, C∗) in the graph. Suppose σ∗ ∈ ∂U∗

and let σ be the corresponding profile in ∂U . Then there exists a pure strategy s for some player n whose

payoff πs(σ) in G from s is greater than the payoff from the reduced form σn of σ
∗
n by at least δ. For a

game Ĝ∗ ∈ B∗, the payoff from s is strictly greater than πs(σ)− δ̄/2 while the payoff from σ∗n is its strictly

less than πs(σ)− δ̄/2. Thus, σ∗ cannot be an equilibrium of Ĝ∗. Therefore, Ĝ∗ has no equilibrium in ∂U∗.
Consequently, the projection map P ∗ : V ∗ → B∗ is proper: (P ∗)−1 maps compact subsets to compact sets.
As shown in Section A.2 of the Appendix, the index and degree of C and C∗ agree. Therefore, the local
degree of G∗ under P ∗ is d. Because P ∗ is a proper map, this implies that the local degree of each game

Ĝ∗ ∈ B∗ is d (Dold, 1972, VIII.4.5). Therefore, the sum of the indices of equilibrium components of Ĝ∗ in
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U∗ is d. Since d 6= 0, Ĝ∗ has an equilibrium in U∗. Since G∗ could be any game whose reduced form is G,

and every game in its neighborhood B∗ has an equilibrium in U∗, C is hyperstable.

Theorem 4.2. An equilibrium component is hyperstable only if its index is nonzero.

Proof. Let C be a component of the equilibria of a game G. Assume that the index of C is zero. Let ε > 0

be sufficiently small that the closed ε-neighborhood U of C in Σ is disjoint from other components. We show

that for every δ > 0 there exists an equivalent game G̃ and a perturbation G̃δ of G̃ such that kG̃− G̃δk 6 δ

and the perturbed game G̃δ has no equilibrium equivalent to an equilibrium in U . Thus, fix some δ > 0.

The construction of the equivalent game G̃ with the requisite property is done in several steps.

For β > 0 say that a strategy τn of player n is a β-reply against σ ∈ Σ if Gn(s,σ−n)−Gn(τn,σ−n) 6 β,

where s ∈ Sn is an optimal reply for player n against σ. A profile τ is a β-reply against σ if for each n the
strategy τn is a β-reply for player n against σ.

Step 1. First we show that without loss of generality we can assume that G satisfies the following

property (*): for every neighborhood W of Graph(BR) there exists a map h : Σ→ Σ such that:

1. Graph(h) ⊂W .
2. For each player n the n-th coordinate map hn of h depends only on Σ−n.
3. h has no fixed points in U .

It suffices to show that there exists an equivalent game G∗ that satisfies (*).
Define G∗ as follows. Player n’s pure strategy set is S∗n = Sn × Sn+1, where n + 1 is taken modulo N .

For each n and m ∈ {n, n + 1} denote by pn,m the natural projection from S∗n to Sm. Then the payoff
function for player n is given by G∗n(s

∗) = Gn(s), where for each m, sm = pm,m(s
∗
m). In other words, n’s

choice of a strategy for n + 1 is payoff irrelevant. Clearly G∗ is equivalent to G. Let Σ∗n be player n’s set
of mixed strategies in the game G∗. We continue to use pn,m to denote the function from Σ∗n to Σm that

computes for each mixed strategy σ∗n the induced marginal distribution over Sm. Let p : Σ∗ → Σ be the

function p(σ∗) = (p1,1(σ∗1), . . . pN,N (σ∗N)); i.e., p computes the payoff-relevant coordinates of σ
∗. Finally let

P : Σ∗×Σ∗ → Σ×Σ be the function for which P (σ∗, τ∗) = (p(σ∗), p(τ∗)). Use BR∗ to denote the best-reply
correspondence for the game G∗. Similarly C∗ denotes the component of equilibria of G∗ that are equivalent
to equilibria in C, and U∗ denotes the neighborhood corresponding to U .
Fix a neighborhood W ∗ of Graph(BR∗). For each µ > 0, let W (µ) be the set of those (σ, τ) ∈ Σ × Σ

for which τ is a µ-reply to σ in G. Then the collection {W (µ) | µ > 0} is a basis of neighborhoods of the
graph of BR. Choose µ > 0 such that P−1(W (µ)) ⊆ W ∗. Corollary A.2 in the Appendix shows that, since
C has index zero, there exists a function h : Σ → Σ such that the graph of h is contained in W (µ) and h

has no fixed points in U . Now define the map h∗ : Σ∗ → Σ∗ as follows: for each n, h∗n(σ
∗) is the product

distribution τn(σ
∗)× pn+1,n+1(σ∗n+1), where

τn(σ
∗) = hn(p1,1(σ∗1), . . . pn−1,n−1(σ

∗
n−1), pn−1,n(σ

∗
n−1), pn+1,n+1(σ

∗
n+1), . . . , pN,N (σ

∗
N )).

By construction, each coordinate map h∗n depends only on Σ∗−n. We claim that the graph of h∗ is contained
in W ∗. To see this remark first that τn(σ∗) is player n’s component of the image of (p−n(σ∗), pn−1,n(σ∗n−1))
under h. Since the graph of h is a subset of W (µ), τ∗n is a µ-reply to p−n(σ∗). Therefore, (p(σ∗), τ(σ∗))
belongs to W (µ). Hence (σ∗, h∗(σ∗)) ∈ P−1(W (µ)) ⊆W ∗.
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To finish the proof we show that h∗ has no fixed point in U∗. Suppose σ∗ is a fixed point of h∗. Then
each σ∗n is a product distribution with pn,n+1(σ

∗
n) = pn+1,n+1(σ

∗
n+1) for all n. Therefore

pn,n(σ
∗
n) = pn,n(h

∗
n(σ
∗)) = hn(p−n(σ∗), pn−1,n(σ∗n−1) = hn(p(σ

∗))

for each player n, which implies that p(σ∗) is a fixed point of h. Since h has no fixed point in U , σ∗ /∈ U∗.
Step 2. Let I be the interval [−δ/2, δ/2]. We now show that without loss of generality we can assume

that G satisfies the following property (**): there exists a function g : Σ → IR, where R =
P
n |Sn|, such

that:

1. For each player n, gn depends only on Σ−n.
2. No profile σ ∈ U is an equilibrium of the game G⊕ g(σ).

As in Step 1 we prove this by constructing an equivalent game with the property (**). Since the payoff

functions are multilinear on the compact set Σ, there exists a (Lipschitz) constantM > 0 such that kGn(σ)−
Gn(τ)k 6Mkσ − τk for all n and σ, τ ∈ Σ. We begin with a preliminary lemma.

Lemma 4.3. If τn is a β1-reply to σ and kσ0 − σk 6 β2 then τn is a (2Mβ2 + β1)-reply to σ
0.

Proof of the Lemma. Let s be an optimal reply for player n to σ0. Then the result follows from the following
inequality:

Gn(s,σ
0
−n)−Gn(τn,σ0−n) 6 |Gn(s,σ0−n)−Gn(s,σ−n)|+Gn(s,σ−n)−Gn(τn,σ−n) + |Gn(τn,σ−n)−Gn(τn,σ0−n)|.

Fix η = δ/16M . For each σ ∈ S there exists an open ball B(σ) around σ of radius less than η such

that for each σ0 ∈ B(σ) the set of pure best replies against σ0 is a subset of those that are best replies to
σ. Since the set of best replies for each player n to a strategy profile is the face of Σn spanned by his pure

best replies, BR(σ0) ⊆ BR(σ) for each σ0 ∈ B(σ). The balls B(σ) define an open covering of Σ. Hence there
exists a finite set of points σ1, . . . ,σk whose corresponding balls form a subcover. For each σi choose an

η-neighborhood W (σi) of BR(σi). Let W = ∪iB(σi) ×W (σi). Then W is a neighborhood of the graph of

BR. From Step 1 there exists a function h : Σ→ Σ such that (1) Graph(h) ⊂W ; (2) for each n, hn depends
only on Σ−n; and (3) h has no fixed point in U . If τ = h(σ) then there exist σi, τ i such that σ ∈ B(σi), τ i
is a best reply to σi, and τ is within η of τ i. Therefore, the Lemma implies that τ i is a 2Mη-reply against

σ; and using the Lipschitz inequality, τ is a 3Mη-reply against σ.

Fix α > 0 such that if σ ∈ U then kσ − h(σ)k > α. Take a sufficiently fine subdivision of each strategy

simplex Σn such that the diameter of each simplex is less than both η and α. Call this simplicial complex Tn;
then |Tn| is the simplex Σn viewed as the space of the simplicial complex Tn. Let T be the multisimplicial

complex
Q
n Tn composed of products of simplices, and let T−n =

Q
m6=n Tm. By Corollary B.5, for each player

n and each sufficiently fine subdivision of the multisimplicial complex T−n, there exists a multisimplicial
approximation to hn. Therefore, there exists a subdivision of each Tm, say T ∗m, such that for each player n
the map hn : |T−n|→ |Tn| has a multisimplicial approximation h∗n : |T ∗−n|→ |Tn|. Denote by h∗ the induced
multisimplicial map.

Let Tn and T
∗
n be the sets of vertices of Tn and T ∗n , respectively, and define T =

Q
n Tn. We now define

a game G that is equivalent to G, as follows. For each player n the set of pure strategies is Tn. The pure

strategy tn ∈ Tn is a duplicate of the mixed strategy in Σn corresponding to the vertex tn of Tn. Since the
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vertices of Σn belong to Tn, G is equivalent to G. Let Σn be the set of mixed strategies of player n in G and

let Σ =
Q
nΣn.

We now construct a function g : Σ → Q
nRTn with the requisite properties by first defining g on Σ and

then extending it to the whole of Σ by letting g(σ) be g(σ), where σ is the equivalent profile in G. For each

n let fn : Σ−n → R be the function defined by f(σ−n) = maxs∈Sn Gn(s,σ−n). For each tn ∈ Tn let V(tn) be
the set of vertices v−n of T ∗−n such that h∗n(v−n) = tn. Also, let X(tn) the set of σ−n whose distance from
X(tn) is at most η, and let Y (tn) be the set of points whose distance from V(tn) is at least 2η. If V(tn) is
nonempty, using Urysohn’s Lemma, define a function πtn : |T ∗−n| → [0, 1] whose value is 1 on X(tn) and 0

on Y (tn). Otherwise, define πtn to the zero function. Since the diameter of each multisimplex is at most

η, for each vertex v−n ∈ V(tn), πtn(·) = 1 on Cl St(v−n). For each n define g1tn : Σ−n → RTn by letting
g1tn(σ−n) = πtn(σ−n)(fn(σ−n)−Gn(tn,σ−n)). Define g2tn : Σ−n → RTn as follows. If V(tn) is empty, then it
is the zero function. Otherwise for each σ−n,

g2tn(σ−n) = (2Mη/|V(tn)|)
X

v−n∈V(tn)

Y
m6=n

σm(vm) ,

where for each σm and each vertex vm of T ∗m, σm(vm) is the vm-th barycentric coordinate of σm. Finally, let
gtn(σ−n) = g

1
tn(σ−n) + g

2
tn(σ−n). For each tn and each v−n that is mapped to tn by h

∗
n, we have that tn is

within η of hn(v−n). Since the latter is a 3Mη-reply against v−n, tn is a 4Mη-reply against v−n. Hence tn
is a 6Mη-reply against every σ−n ∈ Σ−n\Y (tn). Finally, g2tn(·) 6 2Mη implies that kgtn(σ−n)k 6 8Mη =

8Mδ/16M = δ/2 for each σ−n ∈ Σ−n. Thus gn maps Σ−n into ITn . Obviously the extension of g to the
whole of Σ also has norm at most δ/2.

To finish the proof of this step we show that if σ ∈ U then σ is not an equilibrium of G⊕g(σ). Suppose to
the contrary that σ ∈ U is such an equilibrium and let σ be the corresponding strategy in Σ. For each n letK∗n
be the simplex of T ∗n that contains σn in its interior. Let Ln be the simplex of Tn spanned by the images of the
vertices of K∗−n under the map h∗n. Observe that for each tn that is a vertex of Ln, Gn(tn,σ−n)+g1tn(σ−n) =

fn(σ−n) and g2tn(σ−n) > 0, while for any other vertex tn in Tn, Gn(tn,σ−n) + g1tn(σ−n) 6 fn(σ−n) and

g2tn(σ−n) = 0. Hence, the pure best replies against σ−n (and therefore against σ−n) are a subset of Ln. To
derive a contradiction, it suffices to show that σ /∈ L, where L is the multisimplex Qn Ln. Let L

0
n be the

simplex of Tn containing hn(σ) in its interior, and let L0 =
Q
n L

0
n. Since for each n, h

∗
n is a multisimplicial

approximation of hn, Ln is a face of L
0
n and thus L is a face of the multisimplex L

0. Since the diameter of
each multisimplex of T is less than α and since kσ−h(σ)k > α, σ /∈ L0 and a fortiori σ /∈ L. This concludes
the proof of Step 2.

Step 3. Suppose g : Σ → IR has the property (**) described in Step 2. For each σ ∈ U there

exists ζ(σ) > 0 and an open ball B(σ) around σ such that for each σ0 ∈ B(σ) and each g0 such that
kg0 − g(σ0)k 6 ζ(σ), σ0 is not an equilibrium of G⊕ g0. The balls B(σ) form an open covering of U . Hence

there exists a finite set of points σ1, . . . ,σk such that their corresponding balls cover Σ. Let ζ = mini ζ(σ
i).

Construct a subdivision I of the interval I such that the diameter of each simplex (i.e., a subinterval) is
at most ζ. Once again, using the multisimplicial approximation theorem, Theorem B.4 in the Appendix,

there exists a simplicial subdivision Tn of each Σn and for each s ∈ Sn, a multisimplicial approximation
g∗s : |T−n|→ |I| of gs that is multilinear on each multisimplex of T−n. Let g∗ : Σ→ |I|R be the corresponding
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multisimplicial function defined by the coordinate functions g∗s . By construction, no σ ∈ U is an equilibrium
of G⊕ g∗(σ).
As in Section B.2 of the Appendix, let Pn be the polyhedral complex generated by Tn, and let γn : Σn → R

be the associated convex function. For each n let Pn be the set of vertices of Pn. Given a polyhedron P−n
in
Q
m6=n Pm, there exists a multisimplex T−n of T−n that contains it. Since g∗s is multilinear on each

multisimplex, g∗ is multilinear on each polyhedron.
Consider now the equivalent game G̃ where the strategy set of each player n is the set Pn of vertices of the

polyhedral complex Pn. Let Σ̃n be the set of mixed strategies of player n in the game G̃. For each player n,
let An be the |Sn|× |Pn| matrix, where column p is the mixed strategy vector that corresponds to the vertex
p of Pn. Then the payoff to player n from a strategy vector σ̃ ∈ Σ̃ is his payoff in G from the profile σ, where
σm = Amσ̃m for each m. For each n, let Bn : P−n → IPn be the function defined by Bn(p−n) = Ang∗n(p−n).

Consider now the game G̃0 obtained by modifying the payoff functions to the following: for each player n,
his payoff from the pure-strategy profile p is G̃n(p) +Bn,pn(p−n). By construction G̃

0 is a δ/2-perturbation

of G̃. Let cn be the vector in RPn where the coordinate p of cn is γn(p). For each δ0 6 δ/2 let G̃δ0 be the

game G̃0 ⊕ [−δ0c]. Then G̃δ0 is a δ-perturbation of G̃.
We claim now that for sufficiently small δ0, the game G̃δ0 has no equilibrium in the set Ũ that is the

corresponding neighborhood of the component C̃ in the game G̃ that is equivalent to C. Indeed, suppose to

the contrary that there is a sequence δk converging to zero and a corresponding sequence σ̃k of equilibria of

G̃δk that lie in Ũ . For each k let σ
k be the equivalent profile in Σ. For each k and each player n, if τ̃kn is

a mixed strategy such that Anτ̃
k
n = σkn then c

0
nτ̃

k
n > c0nσ̃kn. Thus σ̃kn solves the linear programming problem

min c0nτ̃kn subject to Anτ̃kn = σkn. Let L
k
n be the unique polyhedron of Pn that contains σkn in its interior.

Since γn is a convex function, γn(σ
k) 6

P
pn∈Pn γn(An,pn)

0τ̃kn,pn for all τ̃
k
n such that Anτ̃

k
n = σk, where An,pn

is the p-th column of An and τ̃
k
n,pn is the probability that τ̃

k
n assigns to the pure strategy pn. Moreover, since

γn is linear exactly on the polyhedra of Pn, this inequality is strict unless the support of τ̃kn is contained in
the set of vertices of Lkn. Therefore, the equilibrium σ̃k assigns positive probability only to the vertices of

Lkn.

Now let σ̃ be a limit of σ̃k as δk ↓ 0 and let σ be the equivalent mixed strategy. Then σ̃ is an equilibrium
of the game G̃0. Therefore, σ is an equilibrium of the game G⊕b, where bn,s =

P
p−n∈P−n g

∗
n,s(p)

Q
m6=n σ̃m,p

for each n and s ∈ Sn. By the arguments in the previous paragraph, there exists for each n a polyhedron
P ◦n ∈ Pn such that σ̃n assigns positive probability only to a subset of the vertices of P ◦n . Since each g∗n
is multilinear on the multisimplex T−n that contains P ◦−n, bn,s = g∗n,s(σ−n). Thus σ is an equilibrium of

G ⊕ g(σ), which is a contradiction. Thus, for all sufficiently small δ0 the game G̃δ0 has no equilibrium in

Ũ .

5. Concluding Remarks

Theorem 1.1 has implications for the stronger definition of stability proposed by Mertens (1989). Its key

additional requirement is that the local degree of the projection map p : E → G from the equilibrium graph

to the space of games should be nonzero; that is, the projection map is locally essential or “nontrivial” in

the terminology of algebraic topology. Govindan and Wilson (1997) show that the index of a component is
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the same as the degree of this projection map from any sufficiently small neighborhood of the component.

Theorem 1.1 therefore implies that a hyperstable component satisfies this requirement.

Corollary 5.1. An equilibrium component is hyperstable if and only if the projection map p : E → G is
locally essential.

However, Mertens’ definition implies stronger properties. For instance, Govindan and Wilson (2001b)

prove that a maximal Mertens’ stable set is a component of the perfect equilibria, as defined by Selten

(1975), whereas KM observe that a hyperstable component can contain equilibria that use weakly dominated

strategies, and in particular, equilibria that are not perfect.

Theorem 1.1 is the analog for games of a classic theorem of algebraic topology derived from the Hopf

Extension Theorem (Spanier, 1966, 8.1.18). Say that a component of the fixed points of a map from a space

into itself is essential if every nearby map has a nearby fixed point. For a class of spaces that includes

manifolds with boundaries, O’Neill (1953) proves that a component is essential if and only if its index is

nonzero; McLennan (1988, Appendix E) provides an alternative proof. However, Dold (1972, VII.6.25.4)

describes a space where O’Neill’s construction fails.
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Appendix A. Index Theory

A.1. An Index Derived from the Best-Reply Correspondence. In this section we define an index for

components of equilibria using the best-reply correspondence. Theorem A.1 shows that this index coincides

with the standard index (e.g., Gül, Pearce, and Stacchetti, 1993; Govindan and Wilson, 1997) constructed

from a map. The notation conforms to Section 2.
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Let BR : Σ ⇒ Σ be the best-reply correspondence for the game G, i.e., BR(σ) = {τ ∈ Σ | (∀n) τn ∈
argmaxτ̃n τ̃

0
n · Gn(σ−n)}. The set E of equilibria of G is the set of fixed points of BR; i.e., those for which

σ ∈ BR(σ). Let C be a component of the equilibria of G. We follow McLennan (1989) in defining an index
for C. Let U be an open neighborhood of C such that its closure U satisfies U ∩ E = C. Let W be a

neighborhood of Graph(BR) such that W ∩ {(σ,σ) ∈ Σ×Σ | σ ∈ U −U} = ∅. By Corollary 2 in McLennan
(1989) there exists a neighborhood V ⊆ W of Graph(BR) such that if f0 and f1 are any two maps from Σ

to Σ whose graphs are contained in V , then there is a homotopy F : [0, 1]× Σ→ Σ from f0 to f1 such that

Graph(F ) ⊂ [0, 1] × V . By the Proposition in McLennan (1989) there exists a map f : Σ → Σ for which

Graph(f) ⊂ V . Define the index IndBR(C) to be the standard index of the restricted map f : U → Σ; i.e.,

IndBR(C) is the degree of the corresponding displacement map Id − f . The choice of the neighborhood V
ensures that this index does not depend on the particular map f chosen to compute the index (Dold, 1972).

The index of the component C can also be defined using the index obtained from the map g : Σ → Σ

defined by Gül, Pearce, and Stacchetti (1993), as follows. Let Z =
Q
nRSn and define the map w : Σ→ Z

by w(σ) = z, where zn,s = σn(s) + Gn(s,σ−n) for each player n and each pure strategy s ∈ Sn. Also, let
r : Z → Σ be the retraction that maps a point z to the point τ ∈ Σ that is closest to z in `2-distance.

Specifically, r(z) is computed as follows: for each player n, define vn(z) to be the unique scalar α such thatP
s∈Sn (zn,s − α)

+ = 1; then r(z)n,s = (zn,s − vn(z))+ for each n and s ∈ Sn. Finally g = r ◦ w. The
equilibria of G are precisely the fixed points of g. Define the Gül-Pearce-Stacchetti index IndGPS(C) to be

the standard index of the component C computed from the map g : U → Σ.

Theorem A.1. IndBR(C) = IndGPS(C).

Proof. For each λ > 0 define the game Gλ as the game where the payoff functions of all players in G are

multiplied by λ; i.e., Gλ = λG. Clearly, all games Gλ have the same equilibria. For Gλ let wλ be the map

corresponding to w in the game G, and let gλ = r ◦wλ be the corresponding GPS map. Then for each λ > 0
the homotopy H : [0, 1]×Σ→ Σ, H(t,σ) = g1+t(λ−1), from g to gλ preserves the set of fixed points. Hence,

the index of C under gλ is the same for all λ. To prove Theorem A.1 it is sufficient to show that there exists

λ > 0 such that the graph of gλ is contained in V .2 For each λ > 0 and σ ∈ Σ, wλ(σ) ≡ zλ is such that
1 + λGn(s,σ−n) > zλn,s > λGn(s,σ−n) for all n, s. Choose c(σ) > 0 such that if s is not a best reply to σ−n
for player n, then Gn(s

0,σ−n) − Gn(s,σ−n) > c(σ), where s0 is a best reply for player n against σ. ThenP
s0∈BRn(σ) z

λ
n,s0 − zλn,s > λc(σ)− 1 if s is not a best reply. In particular, if λ > 2/c(σ), then this difference

is at least 1. Therefore, for each such λ, zλ is retracted by r to a point in BR(σ). Now choose an open ball

B(σ) around σ in Σ such that (i) B(σ)×BR(σ) ⊂ V ; and (ii) Gn(s0,σ0−n)−Gn(s,σ0−n) > c(σ)/2 for each n,
s /∈ BR(σ), and s0 ∈ BR(σ). Then as before, gλ(σ) ∈ BR(σ) for each λ > 4/c(σ) and σ0 ∈ B(σ). The balls
B(σ) for σ ∈ Σ form an open cover of Σ. Since Σ is compact there exists a finite set σ1, . . . ,σK ∈ Σ such
that ∪kB(σk) ⊃ Σ. Let λ∗ = maxk 4/c(σk). For each λ > λ∗ the graph of gλ belongs to V .

A corollary follows from McLennan (1988, 4.4, Theorem 6).

2We actually prove a stronger statement: Graph(gλ) ⊂ V for sufficiently large λ. In fact, the proof shows that each
neighborhood of Graph(BR) contains Graph(gλ) for all sufficiently large λ. Thus as λ ↑ ∞, Graph(gλ) converges to Graph(BR)
in the upper topology, as defined by McLennan (1988). Put differently, if λ is large then gλ is a good approximation of the
best-reply correspondence.
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Corollary A.2. If IndBR(C) = 0 then for each neighborhood V of Graph(BR) there exists a map h : Σ→ Σ

such that Graph(h) ⊂ V and h has no fixed point in the neighborhood U of C.

A.2. Equivalence of Index and Degree. Let Γ = RN |S| be the space of all finite N -player games with
a fixed strategy set Sn for each player, and S =

Q
n Sn. Let E∗ be the graph of the Nash equilibrium

correspondence over Γ. Each game can be written uniquely as a pair (G̃, g) where for each player n and each

pure strategy s ∈ Sn,
P
s−n Gs(s−n) = 0. Thus, Γ is the product space Z̃ ×Z of all pairs (G̃, g). KM show

that there exists a homeomorphism Θ : E∗ → Z̃ × Z such that p ◦ Θ−1 is homotopic to a homeomorphism
that extends to the one-point compactification of G. In particular the map p ◦Θ−1 has degree +1. We can
therefore orient E∗ such that the projection map has degree 1. Given a game G and a component C of the

game, choose a neighborhood U of {G̃, g)} × C in the graph that is disjoint from the other components of

the set of equilibria of G (viewed as a subset of E∗). The degree of C, denoted deg(C) is the local degree
of p over U . Since Θ is the identity on the Z̃ factor, we can also define the degree of C using Z as the

space of games. Indeed given a game G = (G̃, g), let E = (g0,σ) such that ((G̃, g0),σ) belongs to E∗. Let
θ : E → Z be the map θ(g0,σ) = z, where z is such that Θ((G̃, g0),σ) = (G̃, z). Then θ is a homeomorphism
between E and Z and as before we can define the degree of C as the local degree of the projection map from
a neighborhood U of {g} ×C in E . Obviously, these two definitions are equivalent. If we use θ, then degree
of C is just the degree of g under the map f 0 ≡ p◦θ−1 from V = θ(U) in Z, where p is the natural projection
from E to Z. Let f : Z → Z be the map f(z) = f 0(z)− g. Then the degree of zero under the map f over U
is the same as the degree of the map f 0 over U . As we saw in Section 2, the degree of f over U is the index
of F over U , which is the same as the index of the GPS map.

A.3. Invariance of Index and Degree. Govindan and Wilson (1997) show that the index (and hence also

the degree) of a component of equilibria is invariant under the addition or deletion of duplicate strategies.

The proof there is incomplete to the extent that it holds only when duplicates of pure strategies are added.

While the proof can be extended to more general duplicates, we present here a simple proof using the index

defined using the best-reply correspondence.

Theorem A.3. The index of a component of equilibria is invariant under the addition of duplicate strategies.

Proof. Let C be a component of equilibria of a game G. It suffices to show that the index of C is invariant

under the addition of duplicate strategies. Accordingly, for each player n let Tn be a finite collection of

mixed strategies. Let G∗ be the game obtained by adding the strategies in Tn as pure strategies for n; i.e.,
n’s pure strategy set in G∗ is Sn ∪ Tn. Let Σ∗n be his set of mixed strategies. Let BR∗ be the best-reply
correspondence in Σ∗. Let p∗ : Σ∗ → Σ be the function that maps each mixed strategy inG∗ to the equivalent
mixed strategy in G. Let ι : Σ → Σ∗ be the “inclusion” map that sends a point in Σ to the corresponding
point on the face of Σ∗. More precisely, ι(σ) = σ∗, where σ∗n,s = σn,s for s ∈ Sn and σn,t = 0 for t ∈ Tn.
Obviously, ι(σ) ⊂ p−1(σ) for each σ ∈ Σ.
Let C∗ ≡ p−1(C) be the component of equilibria ofG∗ corresponding to C. Let U be an open neighborhood

of C whose closure is disjoint from the other components of equilibria of G. Let U∗ = p−1(U). Choose a
neighborhood W ∗ of the graph of BR∗ such that the index of C∗ can be computed as the sum of the indices

of the fixed points in U∗ of any function h∗ whose graph is contained in W ∗.
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Let W be a neighborhood of the graph of BR such that (σ, τ) ∈ W implies p−1(σ) × p−1(τ) ⊂ W ∗. By
the definition of IndBR(C), there exists a function h : Σ→ Σ such that (i) the graph of h is contained in W ;

(ii) h has no fixed points on the boundary of U ; and (iii) IndBR(C) is the index of the map h over U . Define

now a map h∗ : Σ∗ → Σ∗ by h∗ = ι ◦ h ◦ p. Then, by construction the graph of h∗ is contained in W ∗.
Moreover, h and h∗ have homeomorphic sets of fixed points. In fact, the fixed points of h∗ are the

image of the fixed points of h under the injective map ι. Moreover, letting h0 = ι ◦ h, we have that
h = p ◦ h0 and h∗ = h0 ◦ p. Therefore, by the commutativity property of index (cf., Dold, 1972, VII.5.9),
the index of each component F of the set of fixed points of h is the same as the index of ι(F ). Hence

IndBR∗(C
∗) = IndBR(C).

Appendix B. Multisimplicial Approximation

B.1. A Multisimplicial Approximation Theorem. The purpose of this section is to establish a multi-

linear version of the Simplicial Approximation Theorem. Perhaps this result is well known but we have not

found a reference in the literature. We begin with some definitions; cf. Spanier (1966, Chapter 3) for details.

A set of points {v0, . . . , vn} in RN is affinely independent if the equations
Pn
i=0 λivi = 0 and

P
i λi = 0

imply that λ0 = · · · = λn = 0. An n-simplex K in RN is the convex hull of an affinely independent set

{v0, . . . , vn}. Each vi is a vertex of K and the collection of vertices is called the vertex set of K. Each σ ∈ K
is expressible as a unique convex combination

P
i λivi; and for each i, σ(vi) ≡ λi is the vi-th barycentric

coordinate of σ. The interior of K is the set of σ such that σ(vi) > 0 for all i. A face of K is the convex

hull of a subset of the vertex set of K.

A (finite) simplicial complex K is a finite collection of simplices such that the face of each simplex in K
belongs to K, and the intersection of two simplices is a face of each of the two. The set V of 0-dimensional

simplices is called the vertex set of K. The set given by the union of the simplices in K is called the space of
the simplicial complex and is denoted |K|. For each σ ∈ |K|, there exists a unique simplex K of K containing
σ in its interior. Define the barycentric coordinate function σ → V by letting σ(v) = 0 if v is not a vertex

of K and otherwise by letting σ(v) be the corresponding barycentric coordinate of σ in the simplex K. For

each vertex v ∈ V , the star of v, denoted St(v), is the set of σ ∈ |K| such that σ(v) > 0. The closed star of
v, denoted Cl St(v), is the closure of St(v).

A subdivision of a simplicial complex K is a simplicial complex K∗ such that each simplex of K∗ is
contained in a simplex of K and each simplex of K is the union of simplices in K∗. Obviously |K| = |K∗|. We
need the following Theorem on simplicial subdivisions for our Approximation Theorem below (cf. Spanier,

Chapter 3, for a proof).

Theorem B.1. For every simplicial complex K and every positive number λ > 0, there exists a simplicial

subdivision K∗ such that the diameter of each simplex of K∗ is at most λ.

A multisimplex is a set of of the form K1 × · · ·Km, where for each i, Ki is a simplex. A multisimplicial

complex K is a product K1 × · · · × Km, where for each i, Ki is a simplicial complex. (The vertex set V of a

multisimplicial complex K is the set of all (v1, . . . , vm) for which for each i, vi is a vertex of Ki. The space
of the multisimplicial complex is

Q
i |Ki| and is denoted |K|. For each vertex v of K, the star of v, St(v), is

the set of all σ ∈ |K| such that for each i, σi ∈ St(vi). The closure of this set is Cl St(v). A subdivision of a
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multisimplicial complex K is a multisimplicial complex K∗ =QiK∗i where for each i, K∗i is a subdivision of
Ki. In the following, K is a fixed multisimplicial complex and L is a fixed simplicial complex.

Definition B.2. A map f : |K|→ |L| is called multisimplicial if for each multisimplex K of K there exists
a simplex L in L such that:
1. f maps each vertex of K to a vertex of L;

2. f is multilinear on |K|; i.e., for each σ ∈ |K|, f(σ) =Pv∈V f(v)×
Q
i σi(vi).

By Property 1 of the Definition, vertices of K are mapped to vertices of L. Therefore, for each σ ∈ |K|,
f(σ) is an average of the values at the vertices of K. Since the simplex L is a convex set, the image of the

multisimplex K is contained in L. If K is a simplicial complex then Definition B.2 coincides with the usual
definition of a simplicial map. In this case the image of a multisimplex K under f is a simplex of L, but in

the multilinear case the image of K could be a strict subset of L.

Definition B.3. Let g : |K| → |L| be a continuous map. A multisimplicial map f : |K| → |L| is a
multisimplicial approximation to f if for each vertex σ ∈ |K| there exists a simplex L of L that contains
both f(σ) and g(σ).

We could equivalently define a multisimplicial approximation by requiring that for each σ, if g(σ) belongs

to the interior of a simplex L then f(σ) belongs to the closure of L. Put differently, if g(σ) belongs to St(w)

then f(σ) belongs to Cl St(w). We are now state and prove a Multisimplicial Approximation Theorem.

Theorem B.4. Suppose that g : |K| → |L| is a continuous map. Then there exists a subdivision K∗ of K
and a multisimplicial approximation f : |K∗|→ |L| of g.

Proof. The collection {g−1(St(w)) | w is a vertex of L} is an open covering of |K|. Let λ > 0 be a Lebesgue
number of this covering; i.e., every subset of |K| whose diameter is less than λ is included in some set of the
collection. By Theorem B.1, there exists for each i a simplicial subdivision K∗i of Ki such that the diameter
of each simplex is less than λ/2. Then for each vertex v of K∗, St(v) has diameter less than λ. (Recall that
we use the `∞ norm.) We first define a vertex map f0 from the vertex set of K∗ to the vertex set of L as
follows. For each vertex v of K∗, since the diameter of St(v) is less than λ, there exists a vertex w of L such
that g(St(v)) ⊂ St(w). Let f0(v) = w. Suppose v1, . . . , vk are vertices of a multisimplex K. We claim that

there exists a simplex L of L whose vertex set includes f0(vj) for all j. Indeed, since the vj ’s are vertices of
a multisimplex, we have that ∩jSt(vj) is nonempty. Therefore,

∅ 6= g(∩jSt(vj)) ⊆ ∩jg(St(vj)) ⊆ ∩jSt(f0(vj)) .

Therefore, the vertices f0(vj) span a simplex in L. Since f0 maps vertices of a multisimplex to vertices of
a simplex, there exists a unique, well-defined multilinear extension of f0, call it f . To finish the proof we

must show that f is a multisimplicial approximation of g. Let σ be an interior point of a multisimplex K

and let L be the simplex containing g(σ) in its interior. For every vertex v of K, we have by construction

that g(St(v)) ⊆ St(f(v)). Thus g(σ) belongs to the star of f(v) for each vertex of K. In particular, the
set of vertices f(v) where v is a vertex of K span a subsimplex L0 of L. Since f(σ) belongs to L0, f is a
multisimplicial approximation of g.
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The proof of the Theorem shows a slightly stronger result. Let η = λ/2, where λ is as defined in the

proof. If each K∗i is subdivision of Ki such that the diameter of each simplex is at most η then g admits a
multisimplicial approximation f : |K∗|→ |L|. Thus, we have the following Corollary.

Corollary B.5. There exists η > 0 such that for each subdivision K∗ of K with the property that the

diameter of each multisimplex is at most η, there exists a multisimplicial approximation f : |K∗|→ |L| of g.

B.2. Construction of a Convex Map on a Polyhedral Subdivision. This section describes the con-

struction of a convex map associated with a polyhedral refinement of a simplicial subdivision.

Let T be a simplicial complex obtained from a simplicial subdivision of a compact convex subset Σ of Rn.
Let d be the dimension of Σ. The polyhedral complex P is derived from T , as follows (Eaves and Lemke,
1981). For each simplex τ ∈ T whose dimension is d − 1, let Hτ = {z ∈ Rn | a0τz = bτ} be the hyperplane
that includes τ , and if d < n is orthogonal to Σ. Then each closed d-dimensional admissible polyhedron

of P has the form Σ ∩ [∩τHpτ
τ ] where each pτ ∈ {+,−} and H+

τ and H−τ are the two closed halfspaces

whose intersection is Hτ . Enlarge P by applying the rule that each lower-dimensional polyhedral face of an
admissible polyhedron is also admissible. By construction, the closure of each simplex in T is partitioned by
admissible polyhedra of P, any two nondisjoint admissible polyhedra meet in a common face that is also an
admissible polyhedron, and each admissible polyhedron is convex. Associate with P the map γ : Σ → R+
for which γ(σ) =

P
τ |a0τσ− bτ |. Then γ is convex and piecewise affine. Moreover, each maximal domain on

which γ is linear is an admissible polyhedron of P.

Appendix C. Example

Hauk and Hurkens (2002) study a game with an equilibrium component whose index is zero and for which

the projection from a neighborhood in the equilibrium graph is surjective onto a neighborhood of the game.

Thus every nearby game has nearby equilibria. Theorem 1.1 implies that this cannot remain true for every

inflated game. Indeed they show that it fails when a single (carefully selected) redundant strategy is added.

The following example seems to require at least two redundant strategies to be added.

Consider the 2-player game G = (A;B) whose payoff matrices A and B for players 1 and 2 are shown

below along with the labels for their pure strategies.

Left L Center C Right R

Player 1’s payoff matrix A
Outside Option OO : 0 0 0
Top T : 1 −3 −3
Middle M : −2 −1 1
Bottom B : −1 −2 1

Player 2’s payoff matrix B
Outside Option OO : 0 0 0
Top T : 1 0 0
Middle M : 0 1 0
Bottom B : 0 0 1

The game G has an equilibrium component C whose index is zero. In C player 1 uses only his outside option

OO, and player 2 uses any mixed strategy in the convex polytope for which OO is an optimal reply by player
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1. The six vertices of the polytope, labeled P1, . . . , P6 are:

P1 P2 P3 P4 P5 P6
L : 0.75 0.75 0.5 0.2 0 0
C : 0.25 0 0 0.2 0.5 1
R : 0 0.25 0.5 0.6 0.5 0

Numerical experiments indicate that every small perturbation of an inflated game obtained by adding a

single redundant strategy for player 2 has equilibria (generically, two or four, their indices summing to zero)

whose reduced forms are near C. However, the following perturbed inflated game has no equilibrium whose

reduced form is near C. The inflation of G adds two redundant strategies: (1) a convex combination of P1,

P2, and Left in which nearly all the weight is given to P1, and (2) a convex combination of P1, P4, and P6

in which nearly all the weight is given to the mixture P* = (2/3)P1+(1/3)P6 and the remainder divided

between P4 and P6. Note that (1) is outside C and (2) is inside. The perturbation gives small bonuses to

the two redundant strategies, with the first greater than the second. A particular choice of these weights

and bonuses produces the following game that has no equilibrium near C:

Left L Center C Right R (1) (2)

Player 1’s payoff matrix A
Outside Option OO : 0 0 0 0 0
Top T : 1 −3 −3 .01 −1.012
Middle M : −2 −1 1 −1.748 −1.485
Bottom B : −1 −2 1 −1.24 1.485

Player 2’s payoff matrix B
Outside Option OO : 0 0 0 0 0
Top T : 1 0 0 .7525 .497
Middle M : 0 1 0 .245 .497
Bottom B : 0 0 1 .0025 .006

The redundant strategies (1) and (2) were obtained as follows. When a single redundant strategy is added

and given a bonus, the graph of equilibria whose reduced forms are near C, over the simplex of possible

choices of the redundant strategy, has two folds, one above the line between P1 and P2 and one above

the line between P4 and P*. By adding two redundant strategies, each slightly outside the projection of a

fold, one ensures that the perturbed inflated game has no equilibrium whose reduced form is near C. This

procedure suggests an algorithm, but unfortunately the proof of Theorem 1.1 provides no hint about its

general formulation.
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