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Abstract

We use a model of stock price behavior in which the expected rate of return on stocks

follows an Ornstein-Uhlenbeck process to show that levels of return predictability that cause

large variation in valuation ratios and offer significant benefits to dynamic portfolio strategies

are hard to detect or measure by standard regression techniques, and that the R2 from standard

short run predictive regressions carry little information about either long run predictability or

the value of dynamic portfolio strategies.

We propose a new approach to portfolio planning that uses forward-looking estimates of

long run expected rates of return from dividend discount models. We show how such long

run expected rates of return can be used to estimate the instantaneous expected rate of return

under the assumption that the latter follows an Ornstein-Uhlenbeck process. Simulation results

using four different estimates of long run rates of return on US common stocks suggest that

this approach may be valuable for long horizon investors.

Steinberg Hall-Dietrich Hall, Philadelphia, PA 19104-6367. Phone: (215) 898-3004. Fax: (215) 898-6200. E-mail:

yxia@wharton.upenn.edu.



1 Introduction

Hakansson (1970) and Merton (1971) extended the principles of dynamic portfolio optimiza-

tion to situations of stochastic (time-varying) investment opportunities over thirty years ago, but

interest in this topic languished until the 1990’s under the soothing influence of the efficient

markets paradigm and the belief that the investment opportunity set, if not exactly constant, was

sufficiently close to constant that myopic portfolio strategies that ignored time variation in in-

vestment opportunities could be safely employed. However, the debate about excess stock price

volatility,1 the evidence of mean reversion in stock prices,2 and of the predictive power of instru-

ments such as the dividend yield, the book-to market ratio, the term spread and the short term

interest rate,3 have revived interest in dynamic portfolio theory in recent years. This interest has

been further stimulated by the behavior of stock prices in the late 1990’s, which drew attention

to the implications of valuation ratios such as the market dividend yield and the book to market

ratio for expected future returns of equity securities,4 and therefore for portfolio strategies.

The dynamic portfolio models that have been developed and calibrated to US stock returns by

Brennan, Schwartz, and Lagnado (1997), Barberis (2000), Campbell and Viceira (2001), and Xia

(2001), among others, suggest that time variation in investment opportunities may have significant

effects on optimal portfolio strategies for long lived investors, and that failure to take account

of time variation in expected returns may carry significant costs. The analysis of Kandel and

Stambaugh (1996) suggests that short horizon investors also can benefit from predictability, even

if it is highly uncertain. These models all rely on statistical relations between (excess) returns on

stocks and (usually one of) a set of predictor variables or instruments such as those mentioned

above.

However, doubt has been cast on the usefulness of dynamic portfolio models by the weakness

and instability of the estimated relations between stock returns and the instruments. It has also

been suggested that in sample ‘predictability’ may be an illusion, the result of uncertainty and

learning about the parameters of the underlying stochastic process for dividends.5 Consistent with

this suggestion, Goetzmann and Jorion (1993) argue that long run predictive regressions lack power

in small samples,6 while Bossaerts and Hillion (1999) find no evidence of out of sample excess

1See, for example, Shiller (1981), LeRoy and Porter (1981), Kleidon (1986), Marsh and Merton (1986).
2See, for example, Fama and French (1988b).
3See, for example, Keim and Stambaugh (1986), Fama and French (1988a) etc.
4See, for example, Lewellen (2003).
5See Brav and Heaton (2002) and Lewellen and Shanken (2002).
6Campbell (2001) shows that long-horizon regression tests have serious size distortions when asymptotic critical
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return predictability at the monthly frequency in 14 countries using the standard instruments such

as lagged returns, interest rates, and dividend yields. Goyal and Welch (2003) demonstrate that the

dividend yield has no out of sample predictive power for annual stock returns during the period

1926 to 2002. They report that the dividend yield “is primarily forecasting future market returns

over horizons greater than 10 years. It does not forecast market returns (or dividend growth) over

horizons less than 5 years.” In a more recent paper, Goyal and Welch (2004) show similar results

for a wide range of variables7 and conclude that “for all practical purposes, the equity premium

has not been predictable, and any belief about whether the stock market is now too high or too low

has to be based on a theoretical prior.” These results of Goyal and Welch seem to be consistent

with the finding of Philips et al. (1996) that investment managers who followed Tactical Asset

Allocation strategies during the period 1988-1994 failed to outperform static strategies.

On the other hand, there is continuing evidence of predictability in equity returns, especially

over long horizons. Fama and French (1988b), Poterba and Summers (1988), Lo and MacKinlay

(1988), Cochrane (1999), and Campbell and Yogo (2003) all find evidence of temporary com-

ponents in stock prices that becomes stronger at long horizons. Informal evidence of long run

predictability is further apparent from the long swings and upward trend in valuation ratios during

the 20th Century - swings that do not appear to have been mirrored in changing dividend growth

rates.8 The apparent paradox of strong evidence of long run predictability and only weak, if any,

evidence of out of sample short run predictability is resolved by recognizing the importance of the

time series behavior of the predictor variable which determines the time variation in the conditional

mean return. This time series behavior has implications both for the estimation of the relation and

for the economic importance of a given short run relation.

In this paper we demonstrate, first, that levels of return predictability that are of first order

economic significance for long term investors are likely to be hard to detect from short run returns

using the standard econometric methods that have been employed, even though they imply major

deviations of valuation ratios from their long run ‘equilibrium’ levels. In showing that (in-sample)

predictability may be hard to find when it exists, our paper complements the analyses of Goyal and

Welch (2003) and Bossaerts and Hillion (1999) which show that predictability may appear to exist

for certain instruments even when no true (out-of-sample) predictability exists. Secondly, we show

how long run measures of expected return that are anchored in fundamentals and are derived by

values are used, but some versions of such tests have power advantages remaining after size is corrected.
7Campbell and Thompson (2004) show that the findings of Goyal and Welch (2004) are no longer true if sensible

restrictions are imposed on the signs of predictive coefficients and return forecasts.
8Campbell and Shiller (1998, 2001) and Fama and French (2002), among others, find that dividend yields have

little or no forecast power for subsequent dividend growth in the years since 1870.
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comparing current stock prices with expected future dividends may be used to construct portfolio

policies for long run investors. We provide time series estimates of instantaneous expected returns

derived from these Dividend Discount Model measures of long run expected returns, and provide

evidence that these measures would have been useful to long horizon investors.

2 Detecting and Exploiting Predictability

In this section we use the simplest model of stock return predictability, in which the proportional

drift of the stock price follows a standard Ornstein-Uhlenbeck process, to analyze two issues. The

first is the likelihood of being able to detect return predictability using standard approaches if the

stock price drift is perfectly observable. The second issue that we address is the value of following

an optimal strategy that takes account of the time variation in the drift parameter, relative to the

value of an unconditional strategy that treats the drift as constant. We conclude that levels of

time-variation in expected returns that are very important for investors with long horizons (20

years or more), may well be undetectable using the standard statistical approaches and, even if

detectable, are likely to be estimated with considerable imprecision.

2.1 Implications of a Model of Stock Price Behavior

Our basic framework relies on the following continuous time model of the dynamics of the

stock price with dividends reinvested which we denote by P :

dP

P
= (α + βµ) dt + σP dzP , (1)

dµ = κ (µ̄ − µ) dt + σµdzµ, (2)

where dzP and dzµ are correlated standard Brownian motions with the correlation ρPµ. In this

formulation, µt is to be thought of as a perfect signal of the drift of the asset price process,

α + βµt; however, for the most part we shall assume that α = 0, and β = 1; then µ can be

interpreted as the drift of the stock price.

The discrete time equivalent of the Ornstein-Uhlenbeck process (2) is the AR(1) process:

µt − µ̄ = e−κ∆ (µt−∆ − µ̄) + ηt. (3)

where ∆ is the time interval between observations of µ.
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Let R(t, t + τ) denote the cumulative return on the stock over the interval [t, t + τ ], then

R(t, t + τ) ≡ lnP (t + τ) − ln P (t) =
∫ t+τ

t

(
α + βµ(s) − 1

2
σ2

P

)
ds +

∫ t+τ

t
σP dzP ,

=
(

α + βµ̄ − 1
2
σ2

P

)
τ + β (µt − µ̄)

1 − e−κτ

κ

+
βσµ

κ

∫ t+τ

t

(
1 − e−κ(t+τ−s)

)
dzµ(s) +

∫ t+τ

t
σP dzP (s). (4)

The conditional variance of the τ -period return, R(t, t + τ), which we denote by Var(R(τ)),

depends on the volatility of the return process σP , the volatility of the signal σµ, the horizon τ ,

and the mean reversion parameter κ, and can be written as:

Var(R(τ)) =
β2σ2

µ

κ2

[
τ − 2

1 − e−κτ

κ
+

1 − e−2κτ

2κ

]
+ σ2

P τ +
2βσP σµρPµ

κ

[
τ − 1 − e−κτ

κ

]
. (5)

Since the variance of µs conditional on µt (s ≥ t), σ2(µs|µt) =
σ2

µ

2κ

(
1 − e−2κ(s−t)

)
, is decreas-

ing in κ, one might conjecture that the conditional variance of the cumulative return Var(R(τ))

would also be decreasing in the mean reversion intensity κ. The following expression for the

derivative of the variance with respect to κ shows that this conjecture is true only if the correlation

between innovations in P and innovations in µ is positive. When the correlation is negative (as

we shall typically assume it is), the sign of the derivative is indeterminate:

∂Var
∂κ

= −
σ2

µβ2

κ3

[
2τ − 4

1 − e−κτ

κ
+

1 − e−2κτ

κ
+

2κτe−κτ − 2 + 2e−κτ

κ
− 2κτe−2κτ − 1 + e−2κτ

2κ

]

−
2βσP σµρPµ

κ2

[
τ − 1 − e−κτ

κ
+

κτe−κτ − 1 + e−κτ

κ

]{
< 0 if ρPµ ≥ 0,

indeterminate if ρPµ < 0
.

To analyze the role of µt as a predictor of the cumulative return, R(t, t+ τ), re-write equation

(4) as

R(t, t + τ) = aτ + bτµt + ε, (6)
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where

aτ ≡
(

α + βµ̄ − 1
2
σ2

P

)
τ − βµ̄

1− e−κτ

κ
, (7)

bτ ≡ β
1 − e−κτ

κ
, (8)

ε ≡ βσµ

κ

∫ t+τ

t

(
1 − e−κ(t+τ−s)

)
dzµ(s) +

∫ t+τ

t
σP dzP (s),

and ε is independent of µt.

Note first that bτ increases with τ as long as β > 0 and that bτ < βτ ∀τ > 0. In addition,

bτ → β
κ as the horizon goes to infinity, so that an innovation in µ has a permanent effect on the

stock price. As τ → 0, bτ → 0, and bτ/τ → β.

Secondly, bτ is decreasing in the intensity of the mean reversion parameter κ. As κ → ∞ the

process for µ tends to a constant; deviations of µ from µ̄ are transient and, as a result, bτ → 0.

On the other hand, as κ → 0, the process for µ approaches a random walk, and bτ → βτ , or

bτ/τ → β so that an increase in µ increases the expected rate of return in all future periods by

the same amount. Thus, as has been pointed out by Cochrane (1999) and others, the degree of

persistence in µ has major implications for the predictive role of µ in long horizon regressions, and

two signals that differ in their persistence parameter κ may have the same predictive importance

for returns at one horizon, but quite different importance at a different horizon. This suggests, as

we shall see, that it may be dangerous to attempt to assess the relevance of predictive variables

by examining their power at a single horizon.

A simple measure of the predictive power of a signal µt is the R2 from the regression (6)

at different return intervals τ . The unconditional distribution of the predictive variable, µt, is

normal with mean µ̄ and variance
σ2

µ

2κ , and the unconditional variance of R(t, t + τ) is simply

b2
τVar (µt) + Var (ε). The theoretical R2 can be expressed explicitly in terms of the model

parameters as:

R2 ≡ b2
τVar (µt)

b2
τVar (µt) + Var (ε)

,

=

(
1−e−κτ

κ

)2

(
1−e−κτ

κ

)2
+ 2

κ

[
τ − 21−e−κτ

κ + 1−e−2κτ

2κ

]
+ 2κτ

(
σP
βσµ

)2
+ 4ρPµ

σP
βσµ

[
τ − 1−e−κτ

κ

] .(9)

The expression for R2 depends on four parameters: the cumulative return interval τ , the

mean reversion intensity of the signal κ, the noise-to-signal ratio σP
βσµ
, and the correlation between
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the innovations to the return and to the signal ρPµ. While all four parameters are important

in determining the magnitude of the theoretical regression R2, the dependence of R2 on τ has

received special attention in the literature. For example, Fama and Bliss (1987), Cochrane (1997,

1999), and Campbell (2001) have all explored the relation between R2 and τ empirically finding

that R2 normally increases with the return interval τ . While Campbell, Lo and MacKinlay (1997)

derive an approximate relation between a two-period and a one-period R2 in a discrete model,

our simple continuous time setup enables us to examine the relation between R2 and all relevant

parameters, including τ , in closed form.

To analyze formally the relation between R2 and τ , differentiate R2 with respect to τ :

∂(R2)
∂τ

=
σ2

µβ2

2κ2
1−e−κτ

κ

(b2
τVar (µt) + Var (ε))2

[
σ2

µβ2

κ2

(
2κτe−κτ + e−2κτ − 1

)
+ σ2

P

(
2κτe−κτ + e−κτ − 1

)

+
2σP σµβρPµ

κ

(
2κτe−κτ + e−2κτ − 1

)]
,

The expression outside the bracket is always positive but the term inside the bracket may be

positive or negative depending on the parameter values. In general, R2 first increases and then

decreases with the return interval τ , and the sufficient condition for ∂R2

∂τ > 0 is that τ < τ c where

τ c is the solution to the nonlinear equation 2κτ ce−κτc
+ e−2κτc − 1 = 0. The turning point at

which R2 starts to decrease with τ depends on all four parameter values. It may also be verified

that R2 → 0 as τ → 0. Therefore, a variable that perfectly predicts the drift of the stock price will

appear to have no predictive power if the predictive regressions are run using sufficiently short

horizon returns. How short is “sufficiently” short depends on parameter values.

In addition to the hump-shaped relation between R2 and τ , the signs of both ∂R2

∂κ and ∂R2

∂
(

σP
βσµ

)

are also indeterminate. On the other hand,
∂(R2)
∂ρPµ

< 0, so that the theoretical R2 attains its highest

value at ρPµ = −1. Since equation (9) is complicated, we shall explore the determinants of the

R2 numerically.

2.2 Detecting Predictive Power in Finite Samples

For our numerical analysis we choose the following ‘global’ parameters. We set the volatility

of the annual cumulative return
√

Var(R(1)) = 0.14, which is approximately the annual volatility

of real return on the S&P 500 index for the period 1950 to 2003. We set α = 0 and β = 1 so that µ

is the drift of the return process. With this in mind, we set the interest rate r = 1% and the long run

mean µ̄ = 7% which implies a mean equity premium of 6%. Finally, the volatility of the stationary

6



distribution of µ is defined by νµ ≡ σµ√
2κ
. We set νµ at 4%:

9 this means that there is a 68% chance

that the equity premium at any moment will lie between 2% and 6%, and a 6.7% probability that

it will be negative.10 This seems to us to represent a substantial amount of variation in the equity

premium which we should have a reasonable chance of detecting. Within these global parameters

we consider nine scenarios, the product of three values of the mean reversion parameter, κ, and

three values of the correlation between innovations in µ and in returns, ρPµ. The three values

of κ are 0.02, 0.10, and 0.50 which correspond to half-lives for innovations in µ of 34.7, 6.9,

and 1.4 years and therefore would seem to span the economically interesting range. The values

of ρPµ are -0.90, -0.5, and 0.0. We restrict our attention to non-positive correlations because it is

to be expected that, as innovations in expected returns are equivalent to innovations in discount

rates, they should be negatively related to contemporaneous stock returns;11 Xia (2001) reports a

correlation of -0.93 between monthly innovations in the dividend yield and stock returns for the

period January 1950 to December 1997 which is similar to Barberis (2000) who also uses the

dividend yield as a predictor of stock returns.

Table 1 reports various statistics for our 9 different scenarios. Scenario (vi) is highlighed

because it corresponds most closely with the empirical estimates presented below. The first four

lines of the table report the parameters describing each scenario. The volatility of the drift, σµ, is

set to be consistent with the exogenously chosen values of νµ and κ using the formula σµ = νµ

√
2κ.

The volatility of the instantaneous return σP is chosen to be consistent with
√

Var(R(1)) = 0.14

and the values of the other parameters using the quadratic equation (5).

Panel A reports the variance ratios implied by the nine different scenarios. The variance ratio

for m months is defined by the expression:

V Rm =
12
m

Var
(
R
(
t, t + m

12

))

Var(R(t, t + 1))
,

where R
(
t, t + m

12

)
is the cumulative m-month return, and the variances for the returns are cal-

culated using expression (5). Under a pure random walk the variance ratio will be equal to unity

for all values of m. Mean reversion or negative autocorrelation in stock prices, such as would

be introduced by changing discount rates, will cause the variance ratios to decline with the return

calculation interval. The historical variance ratios are for real US equity returns. We report both

the Poterba and Summers (1988) estimates for the period 1871-1985 and an updated calculation

9We shall find that this corresponds to the empirical estimates of this parameter reported below.
10Boudoukh et al. (1993) report evidence that the ex ante risk premium is negative in some states of the world.
11It is possible for innovations in discount rates to be positively correlated with current returns if the innovations in

discount rates are highly correlated with innovations in cash flow news.
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for the period 1871-2003. The standard errors of these historical estimates are of the order of 0.2.

An interesting feature of the historical ratios is that they increase for the 2 year calculation period,

which implies small positive autocorrelation at this horizon. Comparing the variance ratios under

the nine scenarios with the historical ratios, we see that scenarios (i), (iv) and (vii), in which

ρ = 0.0, produce the wrong pattern of variance ratios. Scenarios (v) and (viii) (ρ = −0.5 and

κ = 0.10, 0.50) are the most consistent with the empirical data.

Panels B-E present, for each scenario, means and quantiles of the distribution of statistics for

the regression (6) for one month and one year forecast periods. The theoretical (asymptotic) R2 and

predictive coefficient bτ , calculated using definition (9) and (8), are reported as benchmarks. The

means and quantiles of the distributions of the regression R2 and estimated values of predictive

coefficient, b, are calculated from Monte Carlo simulations of returns. Each simulation is for 70

years (840 months), roughly corresponding to the length of data available on the CRSP tape. Each

scenario is simulated 2000 times, and the predictive regression (6) is run for one-month and one-

year forecast horizons. The one year regressions use non-overlapping observations and the ordinary

least squares estimates of the slope coefficient and its t−statistic are adjusted for bias using the
Amihud-Hurvich (2004) approach. The Stambaugh (1999) bias-adjusted slope coefficients are

indistinguishable from those obtained under the Amihud-Hurvich (2004) adjustment.

The theoretical R2 for the one-month regressions are between 0.5% and 0.7%, and for all

scenarios the average simulated R2 lies between 0.3% and 0.9%. These values compare with

those reported by Bossaerts and Hillion (1999) for a shorter sample period of between 2% and

9.8% using a combination of popular predictors. At the annual forecast horizon the theoretical R2

rises to between 4.8% and 7.4%, while the median of the simulations yield estimates between 2.3%

and 9.0%, which compares with the R2 of 17% reported by Cochrane (1999) where overlapping

observations of price-dividend ratio are used to predict annual excess stock returns. Note that even

with non-overlapping observations, there is a small sample bias in R2 which depends on κ and

ρPµ. The 25th percentile of the R2 distribution is around 3 percentage points below the mean, so

the Goyal-Welch (2003) estimate of 5.83% for the period 1926-1990 is well within the range of

estimates that are consistent with our scenarios.

Figure 1 plots the theoretical R2 as a function of the return interval, τ , for the nine different

scenarios.12 Quite different patterns arise from the different sets of parameter values. Three

features stand out: first, the generally humped shape of the graphs which is consistent with the

12Hodrick (1992) explores the implications of short run predictability for long horizon regressions in small samples

using Monte Carlo simulation in a VAR framework.
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theoretical analysis in the previous subsection; secondly, the small differences between the R2 at

the one year return interval for the different scenarios as compared with the large differences in

R2 for longer intervals; and thirdly, the importance of ρPµ, as well as the persistence parameter κ,

in determining the long horizon R2. When κ = 0.10, for example, the R2 at the 20-year interval

ranges from 15.9% when ρPµ = 0 to 46.1% when ρPµ = −0.9.

Figures 2a and 2b plot the ten- and twenty-year theoretical R2 against the one-year theoret-

ical R2. The one-year R2 is independent of the correlation ρPµ by construction, since we set√
Var(R(1)) exogenously at 14%. The same R2 at the one-year horizon can be associated with

quite different R2 at long horizons: when κ = 0.1, for example, the values of the one-year R2

are all around 6.9%, but the R2 at the twenty-year horizon for ρPµ = 0.0 is 15.9% as compared

to 46.1% for ρPµ = −0.9. Thus, modest variation in the one-year R2 between 6.5% and 7.5% is

associated with enormous variation in values of R2 at the ten- and twenty-year intervals - from

under 20% to over 70% in the case of the 20-year R2.

A high value of κ (0.5) greatly attenuates the long-horizon predictability of the return. On the

other hand, the predictability of long run stock returns when expected returns are highly persistent

depends strongly on the degree of negative correlation between the drift innovations and the stock

return. For example, Scenario (i), which has a highly persistent expected return (κ = 0.02) but

zero correlation (ρPµ = 0.0), yields less return predictability at the ten- and twenty-year horizons

than does Scenario (vi), which has less persistent expected returns (κ = 0.10) but a highly negative

correlation (ρPµ = −0.9). These examples show that, for a given unconditional volatility of the

instantaneous expected return, the long run predictability of stock returns depends crucially on

the correlation between innovations in expected returns and the realized stock return. This is

not surprising since, in the absence of underlying cash flow uncertainty, the correlation would be

perfect and long run returns would be perfectly predictable. Thus it is dangerous to infer anything

about the long run predictability of stock returns from the R2 of one-year regressions, particularly

when the sampling variability of the R2 is taken into account. For example, Table 1 Panel B

shows that under Scenario (ii) there is a 50% chance of estimating an R2 below 5% in an annual

regression using 70 years data even though, as shown in Table 3 below, the theoretical R2 for

20-year returns is almost 57%.

Panels D and E report statistics for the bias-adjusted coefficients of µt and their associated

t−ratios from predictive regressions for one-month and one-year returns using the simulated data.
For most of the scenarios, the median t−statistic is less than 2, and the predictive relation between
the signal µ and the stock return would not be identified as significant in roughly two-thirds of the
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cases.13 The shorter data samples that are typically used in empirical studies to identify potential

signals of the stock price drift make it even less likely that a significant relation will be found, and

if the drift is not a perfect linear function of the signal as we have assumed, then the likelihood

of identifying a significant relation is further reduced. Similar results are obtained for the annual

forecast period. Now, however, it is noticeable that both the theoretical and the estimated value

of b decline for large κ which reduces the persistence of the signal.

The evidence in Table 1 shows that for the stock price processes that we have considered

it is likely to be difficult to identify a significant relation between even a perfect signal of the

expected return on stocks and the realized returns.14 Even if a statistically significant relation is

found, the standard error of the coefficient will be large, which makes the use of the estimate for

portfolio planning purposes problematic.15 Thus, the failure of Goyal and Welch (2004) to find

any ex-post predictive power in the dividend yield for excess returns on common stocks is not

surprising even if the equity premium has a standard deviation as high as 4% and the dividend

yield is a perfect signal of the expected return. Throughout this section we have assumed that

the standard deviation in the equity premium is 4%. While this seems to us to be quite large, we

have found that it is broadly consistent with the levels of stock return predictability and negative

autocorrelation in stock returns that previous researchers have found. We consider next whether

this level of return predictability is of economic significance for variation in the level of stock

prices.

3 Stock Price Variation and Variation in the Expected Returns

To assess the implications for the level of stock prices of time variation in expected returns of

the magnitude discussed above, we employ a simple valuation model in which the instantaneous

expected rate of return on the stock, µ, follows the O-U process described by equation (2). Since

stock prices vary with dividend growth expectations as well as expected returns, we assume that

the expected growth rate in dividends is constant in order to isolate the effects of expected returns

on stock prices. Thus, the dividend on the stock is assumed to follow a geometric Brownian

13Of course, if the coefficient is not corrected for bias, the t−statistic are somewhat higher.
14Engstrom (2003) analyzes a related model in which µ is the dividend yield and β is a stochastic parameter. He

also finds that predictive regressions of the form (6) have no power to reject the null of “no predictability.”
15See Xia (2001) for an analysis of the effects of parameter uncertainty on optimal portfolio planning.
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Motion with constant expected growth rate, g:

dD

D
= gdt + σDdzD. (10)

The ex-dividend value of the stock, V (D, µ), is homogeneous of degree one in the level of

the dividend, V ≡ Dv(µ), and its total return (capital gain plus dividend) may be written as:

Ddt + dV

V
=

[
1
2

v
′′

v
σ2

µ +
v
′

v
[κ (µ̄ − µ) + σDµ] + g +

1
v

]
dt + σDdzD +

v
′

v
σµdzµ, (11)

where σDµ ≡ σµσDρDµ is the covariance between the dividend growth and the expected return.

On the other hand, the total stock return is also given by (1) in reduced form where P denotes

the cum-dividend price and α = 0 and β = 1 in the current setting.

Equating the drift term in (11) to the drift term in (1) yields the following ordinary differential

equation (ODE) for the price-dividend ratio, v, as a function of the expected rate of return µ:

1
2
v′′σµ

2 + v′ [κ(µ̄ − µ) + σDµ] + (g − µ)v + 1 = 0. (12)

The growth condition, g + σ2
µ

2κ2 − σDµ

κ < µ̄, ensures that the above ODE has a solution. It can

also be shown that ν(µ) < 0 so that a higher discount rate µ leads to a smaller price-dividend

ratio. The boundary condition for v(µ) for high values of µ is limµ→∞ v(µ) = 0; and we impose

a lower reflecting boundary on µ at µ∗ such that v′(µ∗) = 0.16

In order to explore the sensitivity of the price-dividend ratio, v, to the expected rate of return µ,

when the expected rate of return follows the stochastic process (2), the partial differential equation

was solved numerically for the values of κ and ρPµ that describe the scenarios used in Table 1.

The real expected dividend growth rate, g, and the volatility of the real dividend growth rate, σD,

are set to 0.86% and 8.52% respectively, which are the sample mean and volatility of the real

dividend growth rate of the S&P 500 for the period from 1950 to 2002.17 The parameter, ρDµ,

was then set so that σV was approximately equal to 14%. This is not possible for the scenarios

in which ρPµ is 0 or -0.5. For the three remaining scenarios, there are two equal and opposite

values of ρDµ which satisfy the condition σV ≈ 14%.

Table 2 shows, for the three scenarios in Table 1 for which the σV condition is satisfied, the

effect of variation in µ on the price-dividend ratios and dividend yields. In scenario (vi) with

16See Feller (1951). In our simulations below, we set µ∗ = −2.5%, which is about three standard deviations away
from the long run µ̄ = 9%.

17The P/D ratio and dividend data are from Robert Shiller’s web page http://www.econ.yale.edu/ shiller/data.htm.
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κ = 0.1, which corresponds mostly closely to the empirical estimates which we shall present

below, the price-dividend ratio increases by around 65% as µ moves from one standard deviation

below its long run mean to one standard deviation above. The sensitivity of the stock price to µ

is less in the high κ scenario (ix) and greater in the low κ scenario (iii).

The results in Tables 1 and 2 show that it is possible for changes in the expected rate of

return, µ, to have very large effects on stock prices without those changes being easily detected

by standard statistical approaches. For example, Table 1 shows that in Scenario (vi), in which

κ = 0.10, the median bias-adjusted t−ratio on the predictor variable in regressions of one-year
(one-month) returns on µ is only 1.74 (1.81) when 70 years of data are available. Yet Table 2

shows that in this same scenario a change in µ from one standard deviation below the mean to

one standard deviation above the mean can increase the dividend yield by 60-68% without any

change in dividend growth rate expectations.

4 Economic Significance of Predictability

Under the scenarios that we have described above, an investor faces a situation in which

there is little short run predictability in stock returns, but there may be very significant long run

predictability, depending on the persistence of the equity premium and the correlation of innovations

in the premium with stock returns. Under these circumstances it is natural to ask whether there

are likely to be significant costs for an investor who ignores time variation in expected returns.

We answer this question by comparing the certainty equivalent wealth of an investor under an

“unconditional” strategy with the certainty equivalent wealth under the “optimal” strategy.

The investor is assumed to have an iso-elastic utility function defined over end-of-period wealth

at the investment horizon T :18

max
x

E0 [u (WT )] ,

where

u (WT ) =





e−ρT W 1−γ
T

1−γ γ > 1,

e−ρT lnWT γ = 1.

18Brennan and Xia (2002) andWachter (2002) show that the determination of an optimal consumption and investment

program for an investor with time-additive utility can be represented as a time integral of optimal utility of terminal

wealth problems.
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The dynamic portfolio choice problem is subject to the dynamic budget constraint:

dW

W
= [x (α + βµ − r) + r]dt + xσP dzP ,

with x defined as the proportion of wealth invested in the single risky asset whose stochastic

process was given in equations (1-2). The risk free interest rate, r, and the stock return volatility,

σP , are assumed to be constant for simplicity.
19 The “unconditional” strategy, which is based on

the assumption that the equity premium is constant, allocates a constant fraction of wealth to the

risky asset, but the allocation to the risky asset under the “optimal” strategy depends on µt as

shown below.

Denoting the equity premium by yt ≡ α + βµt − r, the investor’s optimal dynamic policy20 is

to invest a fraction of his wealth, x∗
t , in the risky asset , where:

x∗
t =

yt

γσ2
P

+
ρPµσµ

γσP
[B(τ) + C(τ)yt] , (13)

and τ ≡ T − t is the time remaining to the investment horizon. The investor’s indirect utility,

J(W, µ, τ) ≡ maxxt Et [u (WT )], is given by:

J(W, µ, τ) = e−ρt W
1−γ

1 − γ
exp

{
A(τ) + B(τ)yt +

1
2
C(τ)y2

t

}

≡ e−ρt W
1−γ

1 − γ
φo(µ, t), (14)

where A(τ), B(τ) and C(τ) are defined in Appendix A.

The optimal equity allocation, x∗
t , is a time-dependent function of the equity premium y. Xia

(2001) shows that the allocation in general is a non-monotonic function of the investment horizon,

and that if the return process is negatively correlated with the process for µ, i,e, ρPµ < 0, which

we have argued is likely to be case, then the optimal equity allocation x∗ most likely increases

with the investment horizon τ .

Let xu denote the constant equity allocation under the unconditional strategy which treats the

equity premium, ȳ ≡ α + βµ̄ − r, as a constant. Then

xu ≡ ȳ

γσ2
P

. (15)

19For models of dynamic investment strategies with stochastic interest rates see Campbell and Viceira (2001) and

Brennan and Xia (2002). For models of dynamic investment strategies with stochastic return volatility see Liu and Pan

(2003).
20This was first derived by Kim and Omberg (1996); it is discussed in more detail in Xia (2001).
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Although the optimal unconditional strategy is based on an equity premium that is assumed to

be constant, ȳ, the evolution of the investor’s wealth depends on the true dynamics of the equity

premium µ − r. As shown in Appendix B, the indirect utility function for the unconditional

strategy under the true dynamics of the equity premium is given by:

Ju(W, µ, τ) = e−ρt W
1−γ

1 − γ
exp {D(τ) + E(τ)µt}

≡ e−ρt W
1−γ

1 − γ
φu(µ, t), (16)

with D(τ) and E(τ) defined in Appendix B.

The Certainty Equivalent Wealth under the optimal strategy, CEW o(µ, τ), is defined as the

amount of wealth to be received at the horizon with certainty that would give the investor the same

expected utility as he receives under the optimal strategy with an initial $1 of wealth to invest:

CEW o(µ, τ) ≡ [φo(µ, τ)]
1

1−γ . (17)

The Certainty Equivalent Wealth for the unconditional strategy, CEW u(µ, τ), is defined analo-

gously.

We shall analyze the ratio of the certainty equivalents under the two strategies, CEWRou,

which is defined by

CEWRou(µ, τ) ≡ CEW o(µ, τ)
CEW u(µ, τ)

.

The ratio, CEWR, is a measure of the value of taking account of variation in the equity premium.

Table 3a reports values of CEWRou for different horizons across the nine different scenarios

of the stochastic stock price processes, and for different initial values of µt when the coefficient

of relative risk aversion, γ is equal to 5. We include scenarios (i), (iv), and (vii) in the table

for completeness, although the pattern of declining variance ratios generated by these scenarios is

inconsistent with the empirical evidence, and the zero value of ρµD contrasts with the negative

value we expect to be associated with discount rate effects. Therefore we restrict our discussion

to the other six scenarios.

When µt = µ̄, the optimal strategy offers no measurable advantage over a one-year horizon

in any of the scenarios; a gain of up to 5% over a five-year horizon; a gain of between 2% and

15% over 10 years, depending on the scenario, and a gain of 7% to 57% over 20 years, again

depending on the scenario. Under Scenario (v) the gain is 2% for a 5 year horizon, 6% for a

10-year horizon and 16% for a 20-year horizon. Focusing on the 20-year horizon, the gain from the
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optimal strategy when µt is one standard deviation above its mean may be substantial, particularly

when ρPµ = −0.9 (scenarios (iii) and (vi), and (ix)) and, for any given scenario, the increase

in the CEWR is greater for a one standard deviation increase in µt than is the reduction for a

half standard deviation decrease in µt. Note that, while the R2 of the predictive regressions was

determined primarily by the value of κ, the influence of ρPµ on CEWR is much greater; for

example, comparing scenarios (iv) and (vi) at the 20-year horizon when µt = µ̄, the advantage of

the optimal strategy increases from 19% to 57% as ρPµ decreases from zero to −0.90. This is

because a large negative correlation between stock returns and the expected rate of return reduces

the volatility of long horizon returns; this effect is taken into account by the optimal strategy which

invests more than the unconditional strategy in stocks for µ > µ̄ when the horizon is long. The

benefit of the optimal strategy is a non-monotone function of the persistence parameter κ, tending

to be greatest for κ = 0.10 at the longer horizons.

The short run predictability of returns as measured by the one-year R2 is not, however,

necessarily associated with greater values of the optimal strategy relative to that of the unconditional

one. This is illustrated in Figure 3, where the certainty equivalent ratio under the optimal and

the unconditional strategies for a twenty-year horizon, CEWRou, is plotted against the one-year

R2 for the nine scenarios. Interestingly, there is also no clear relation between the advantage of

the optimal strategy and the long run predictability of returns (twenty-year regression R2) when

µ = µ̄: the correlation between the 20-year CEWR across scenarios and the 20-year R2 is −0.05.

Less surprisingly, since µ carries more information about future investment opportunities when

the R2 is high, the 20-year CEWR has a correlation of −0.48 with the 20-year R2 when µ is

one standard deviation below its mean and a correlation of 0.57 when µ is one standard deviation

above its mean. Finally, it is interesting to note that there is also no relation between CEWRou

and the monthly or annual out-of-sample predictability as measured by the root mean squared error

(RMSE).21

In summary, the gains to the optimal strategy can be very large for long horizon investors. For

scenarios (v) and (vi) which correspond closely to the behavior of the expected rate of return that

we shall extract from forecasts of long run rates of return, the gains run from 16% to 125% over

a 20-year horizon, depending on the initial value of µ.

21The out of sample RMSE is calculated from the simulated data used for Table 1; the predictive relation is

estimated from the first 65 years of data, and the out of sample RMSE is calculated from the differences between the

predicted and the realized returns over the following 5 years. The results, which are not reported here, are available

on request. Goyal and Welch (2003, 2004) use the out of sample RMSE as a measure of the value of a predictive

instrument.
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The gains of the optimal strategy come from both market timing and hedging. Market timing

is simply the variation in the equity allocation with the equity premium. Hedging is the additional

allocation to equities that results from the negative correlation between innovations to rates of

return and returns on the equity security, which implicitly recognizes that equities are not so risky

in the long run.22 The benefits of market timing, but not of hedging, are captured by the myopic

rule, xm:

xm
t ≡ α + βµt − r

γσ2
P

=
yt

γσ2
P

. (18)

The certainty equivalent wealth associated with the myopic strategy is calculated by evaluating

the expected utility associated with the myopic strategy, and the details are given in Appendix

C. Table 3b reports the certainty equivalent wealth ratios between the optimal and the myopic

strategies CEWRom. The results show that the hedging gains offered by the optimal strategy but

not by the myopic strategy, are zero when ρPµ = 0 and of the order of 6% at the 20-year horizon

when ρPµ = −0.50, but are as high as 38-66% when ρPµ = −0.90.

For comparison, the certainty equivalent wealth associated with the optimal buy-and-hold

strategy, xb, which is described in Appendix D, was calculated numerically. The initial equity

allocation of the buy-and-hold strategy depends on the value of µt, but subsequent changes in the

allocation are determined entirely by the realized asset returns. The certainty equivalent wealth

ratios between the optimal and the buy-and-hold strategies CEWRob, reported in Table 3c, show

that the buy-and-hold strategy is extremely inefficient.23 At the 20-year horizon the gains of the

optimal strategy when κ = 0.1 are of the order of 38-81% when ρµD = −0.50 and 76-192%

when ρµD = −0.90.

To this point, we have shown that time-variation in expected stock returns, which may be

very difficult to detect by standard regression methods, may nevertheless imply both significant

variation in stock prices that is unrelated to changes in cash flow expectations, and substantial

potential gains to the use of dynamic portfolio strategies for long horizon investors. However,

the gains that we have calculated assume that it is possible to observe the instantaneous expected

return on the stock and, as we have seen, regression estimates of the relation between expected

returns and even perfect instruments of it, are likely to be very imprecise. Therefore, in the next

section, we explore the use of estimates of long run expected returns derived from a dividend

discount model (DDM) as inputs to dynamic portfolio models.

22Stambaugh (1999) and Barberis (2000) compare myopic and buy-and-hold strategies.
23This is in contrast to the findings of Brennan and Torous (1999) who show that a buy-and-hold strategy performs

well relative to a rebalancing strategy when the investment opportunity set is treated as constant.

16



5 Forecasts of Equity Returns

Regressions that attempt to predict stock returns from instruments such as the dividend yield

or the interest rate lack strong theoretical restrictions on the regression coefficients and, as we

have seen in Section 2, the data are likely to yield very imprecise estimates of the coefficients

even when the instruments are perfect. It is not surprising therefore that such regressions have

essentially no out of sample predictive power.

An alternative to the simple regression approach is to estimate the expected return on stocks by

comparing the current level of the stock market with forecasts of future dividends on the market

portfolio - the Dividend Discount Model (DDM) approach. The advantage of this approach,

which has long been employed in “Tactical Asset Allocation” models, is that the expected return

is estimated directly and that there is no need to estimate a regression coefficient relating the stock

(excess) return to the predictor instruments. The offsetting disadvantage is that the rate of return

estimated from the DDM is a long run internal rate of return and there is no reason to believe that

this will be equal to the instantaneous expected rate of return even if the dividend forecasts are

unbiased. Therefore, it is necessary to develop a model to derive the expected instantaneous rate

of return from the long run expected rate of return.

5.1 Models and Estimation Procedure

We employ two models to convert the estimated DDM long run expected rate of return into

an estimate of µt, the instantaneous expected rate of return. The first model assumes that the

dividend growth rate g is a known constant. The second model assumes that the growth rate

follows an Ornstein-Uhlenbeck process.24 Both methods assume that the instantaneous expected

rate of return follows an O-U process as in equation (2).

Our basic input data are direct estimates of the DDM long run ‘expected rate of return,’ kt,
25

as defined by the discounted cash flow model:

Pt =
∞∑

τ=1

Et [Dt+τ ]
(1 + kt)

τ , (19)

where Pt is the level of the stock price index at time t, and Et [Dt+τ ] is the dividend on the index

24Brennan and Xia (2001) assume a similar model for the dividend growth rate.
25There is no assurance that kt, the solution to equation (19), will be equal to the expected rate of return except

when all future dividends are known and discount rates are constant.
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expected at time t to be paid at time t + τ .

Model 1: constant g

When the dividend growth rate, g, is constant, there is a one-to-one correspondence between

kt and the price-dividend ratio, P/D, which is given by the (discrete time version of the) Gordon

growth model:

vt ≡
Pt

Dt
=

1 + g

kt − g
. (20)

Note that equation (20) rests on the assumption that the dividend expectations in (19) form a

geometric series.

It was shown in Section 3 that if the expected rate of return, µ, follows an O-U process and

the dividend growth rate is constant, then the price-dividend ratio v(µ) also satisfies the ordinary

differential equation (ODE) (12). Since v is a monotonic function of µ, at each point in time there

exists a µt whose implied v from the ODE is equal to the price-dividend ratio associated with kt

from equation (20) for a given value of g. This implies a (nonlinear) one-to-one mapping between

kt and µt for a given set of parameters for the stochastic process for µ, θµ ≡ (κ, νµ, µ̄, σDµ). As a

result, these parameters and the time series of µt can be estimated by an iterative process: starting

with an initial value of θ = θ0, µt is calculated from the time series of kt; then θµ is estimated

from the time series of µt, and a new µt series is re-calculated from kt; the process continues

until convergence is achieved. We denote the resulting Model 1 estimates by µ1 and θ1
µ.

This iterative procedure is essentially a non-linear Kalman filter in which the latent variable

µt is a nonlinear function of the observable variable kt. The transition equation for µt is the

discrete-time equivalent of the O-U process:

µt+∆t = (1 − e−κµ∆t)µ̄ + e−κµ∆tµt + ε (21)

and the observation equation (which contains no observation error) is :

kt = f(µt) = g +
D

P
= g + (v(µt, θ))

−1 .

The mapping of v implied by the DDM to the v implied by the ODE is equivalent to solving the

nonlinear function f numerically.

Model 2: stochastic g

To allow for the possibility that dividend growth rate expectations are stochastic, the instanta-
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neous dividend growth rate is assumed to follow an Ornstein-Uhlenbeck process:

dg = κg (ḡ − g)dt + σgdzg. (22)

Two steps are then required to derive µt from kt: first the instantaneous dividend growth rate, gt,

and the parameters of its stochastic process, θg ≡ (κg, σg, ḡ), are estimated and then, given gt and

θg, the time series of µt and the parameters of its stochastic process, θµ are estimated.

With stochastic dividend growth, the DCF valuation formula that defines kt can be written as:

Pt

Dt
=

∞∑

s=1

Πs
i=1E [(1 + gt+i)|gt]

(1 + kt)s
, (23)

For a given set of parameters of the dividend growth process θg, E [(1 + gt+i)|gt] is a known linear

function of gt. That is, equation (23) is used to solve for the time series gt, given θg, the observed

series of price-dividend ratios P/D, and the DDM expected rates of return kt. The estimated time

series gt is then used to estimate θg , and the procedure iterates until there is a consistent set of gt

and θg, (g∗t , θ
∗
g).

This procedure can again be interpreted as a Kalman filter in which g is the latent variable

with the transition equation

gt+∆t = (1− e−κg∆t)ḡ + e−κg∆tgt + ε,

while the observation equation relating the observable variables k and P/D to the unobservable

variable g is given implicitly by (23).

Conditional on (g∗t , θ
∗
g) from the first step, µt is determined in the second step. The price-

dividend ratio v ≡ v(µ, g; θµ, θ
∗
g) now satisfies the following two-state-variable partial differential

equation:

0 =
1
2
σ2

gvgg + σgσµρgµvgµ +
1
2
σ2

µvµµ + [κg(ḡ − g) + σgσDρgD] vg

+ [κµ(µ̄ − µ) + σµσDρDµ] vµ + [g − µ]v + 1. (24)

Equation (24) depends on the set of parameters θ∗g , which was estimated in the first step, and the

unknown θµ, which is to be estimated together with µt in the second step. For a given value of

θµ, the PDE (24) is solved numerically for v(µ, g; θµ, θ
∗
g). Given g∗t from the first step, a mapping

between kt and µt, kt = f(µt, gt), is defined by setting v(µ, g∗t ; θµ, θ∗g) equal to the observed price

dividend ratio P/D. The time series of µt estimates are then used to estimate a new θµ and the

process is iterated until convergence. This can be interpreted as another Kalman filter in which
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the transition equation of the latent variable µt is given by (21) while the nonlinear observation

equation is:

P/D = v(µt, g
∗
t ; θµ, θ∗g).

The resulting estimates from Model 2 are denoted by θ2
µ and µ2.

5.2 Estimates

Quarterly data on real dividends and the price-dividend ratio for the S&P 500 index are

obtained for the sample period 1950.1 to 2002.2. Four different DDM discount rate series, kt,

are used for illustrative purpose. The first two series are estimates of the real long run expected

rate of return on equities that would have been assessed by investors at each date. The Arnott

and Bernstein (2002) (A&B) series, k1, is constructed by adding to the current dividend yield an

estimate of the expected long run real growth rate in dividends which in turn is equal to a forecast

of real GNP per capita growth less a ‘dilution factor’ - these are estimated using an average of the

experience over the previous 40 years and the experience since the series began in year 1810. The

Ilmanen (2003) (IL) series, k2, is constructed by adding together estimates of the “dividend yield”

and the long run growth rate of dividends. The former is calculated from a smoothed earnings

yield multiplied by 59%. The latter is an average of 2% and the past 10, 20, 30, 40 and 50 years’

geometric average real growth rate in corporate earnings.

Both the A&B and the IL series were constructed around 2002 for research purposes and

use data or parameter values that may not have been available to market participants at the date

of the forecast. However, the next two series, k3 and k4, were constructed in real time for use

by investment professionals in asset allocation strategies. The series k3 is provided by Wilshire

Associates (WA), an investment management consulting firm, and the series k4 is from Barclays

Global Investors (BGI), a global investment management firm. They are both in nominal terms

and are constructed by first aggregating I/B/E/S consensus estimates of growth rates in earnings

per share out for five years for individual firms in the S&P 500 index and then letting the growth

rates converge linearly to the economy-wide average growth rate over the next 10 years. The

resulting growth rates are then used to project current dividends and to calculate an implied DDM

rate of return from the current level of the S&P 500 index. These two nominal series are obtained

from real-time forecasts of fundamentals that do not use any future information.

Table 4 reports the estimated parameters of the µ process for each series under the two

assumptions about dividend growth. Several features stand out in the real series. First, the
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estimates of κµ, σµ, and µ̄ are largely unaffected by whether the expected dividend growth rate is

assumed to be constant or not. Secondly, the estimates of both κµ and σµ are somewhat higher

for the Ilmanen series than for the A&B series; the effect of these differences on νµ, the standard

deviation of the stationary distribution of µ, are largely offsetting and the estimates are very close

to the value of 4% that we have assumed in our simulations in Sections 2 and 3. Thirdly, the

estimates of the correlation ρPµ are all between −0.884 and −0.981; this is what we should

expect since µ is a proxy for the discount rate. Finally, most of the parameters are quite close to

the values that were assumed or derived for Scenario (vi) in Table 2 (which assumes a constant

expected dividend growth rate). The exception is ρµD which is much higher in Scenario (vi).

We suspect that this is because σD was set equal to 12.02% in Table 2 while its estimate is only

8.52% in Table 4.26

The estimates of the parameters of the nominal µ process are broadly similar to those estimated

for the real models except that in both cases the Model 2 σD is over 20%, but this is offset by the

much higher level of mean reversion of the dividend growth rate κg; in addition, ρµD is positive

in both nominal models, while it is negative in the two real models.

Figure 4a shows that when the A&B series k1 is used as the input, the estimates of µ from

the two models, µ1,1 and µ1,2, are virtually coincident, suggesting that there is little advantage

in allowing for a stochastic dividend growth rate. Note that both estimates of the instantaneous

expected rate of return, µ, are much more volatile than the underlying DDM k series from which

they are derived: the maximum value of µ1,2 is over 16% in June 1982 and the minimum is around

-3% in March 2000; in contrast, the maximum and minimum values of the DDM k, which fall

exactly on the same two months, were respectively 7.9% and 2.1%.

Figure 4b plots the corresponding µ estimates from the Ilmanen series k2. As in the previous

case, the µ2,1 and µ2,2 series track each other closely except around the end of 1999 when the

decline in the Model 2 estimate, µ2,2, is much more dramatic than that in µ2,1: µ2,2 reaches a

minimum of -3.2% just before the end of the bull market in December 2000. While the two series of

µi,2 (i = 1, 2) generally track each other quite well, there are periods of significant differences. In

the 1950’s the Ilmanen estimate exceeds the A&B estimate by up to 3.8%. Significant differences

of the opposite sign occur during the period 1983-1996; in September 1987 the Ilmanen estimate

was less than 1% while the A&B estimate was over 6.5%.

26As noted above, 12.02% is the sample volatility of annual real dividend growth over the period 1872-2001, while

8.52% is the estimate of σD in equation (22) derived from quarterly data for the period 1950.1 to 2002.2 using the

algorithm described under Model 2 above.
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Figure 5 plots the quarterly nominal estimates of ki, µi,1 and µi,2 (i = 3, 4) from BGI and WA

for the shorter periods for which these series are available. These last two series differ from the

previous two in three significant ways. First, they are truly ex-ante; secondly, they are nominal

expected rates of return; thirdly, they are based on analysts’ forecasts of earnings growth rates

which are known to be upward biased. Not surprisingly, these nominal k series lie everywhere

above the two real k series. Nevertheless, they show a similar pattern of increase during the 1970’s,

the BGI series k3 (the WA series k4) reaching a peak of 19.1% (18.8%) in 1981Q3 (1982Q2).

After the peak, there is a prolonged decline in both series. Although for both series, µi,1 and µi,2

(i = 3, 4) move largely in parallel, µi,1 is everywhere above µi,2 (i = 3, 4) and the difference

between them is much larger than that observed for the A&B and the IL real series. The two

µi,2 (i = 3, 4) series track each other closely except for the period 1980-82 as well as 1999-2000,

when the WA estimate µ4,2 exceeds the BGI estimate µ3,2 by 1-3%, and the period 2001-2002

when the WA estimate µ4,2 is below the BGI estimate µ3,2 by 2-5%.

5.3 Return Prediction

We have already shown that even when return predictability is of great economic importance,

the statistical evidence of predictability may be weak and hard to detect using standard statistical

methods. Therefore, even if the µ series contain valuable information for portfolio planning, the

statistical evidence of their predictive power may be weak.

Panel A of Table 5 reports the results of regressions of quarterly real returns on the S&P 500

index on values of µi,2 (i = 1, 2) derived from the A&B and IL real DDM series, while Panel

B reports the results of regressing quarterly nominal returns on the estimates of the nominal µi,2

(i = 3, 4) derived from the BGI and WA nominal DDM series.

We report results for the whole sample period from 1950.2 to 2002.2, and also the two

approximate halves of the period, omitting the influential 1974.3 quarter when the real return on

the S &P 500 was approximately minus 28%. For the two real µ series, the effect of omitting this

quarter is to raise both the estimated coefficient towards its theoretical value of unity and to raise

the regression R2. While the regression coefficients are not significantly different from either zero

or their theoretical value of unity, the point estimates are close to unity. The explanatory power of

the predictive variable in both models is considerably greater in the first half of the sample period

where the regression R2 is around 4-5% and the predictive coefficient is statistically significant

at the 5% level. In all other periods, however, regression R2’s are all below 2% and none of the

predictive coefficients is significant at the 5% level.
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Panel B reports the corresponding results for nominal returns using the predictors derived from

the BGI and WA nominal DDM models. These models have greater predictive power than the

two real models for the relevant sample periods, with R2 at around 2-3%, despite the fact that

they were made in real time and contain no ‘look-ahead’ bias. The estimates of the coefficients

of the predicted return are little affected by the omission of 1974.3 and, as in the two previous

cases, are close to the theoretical value of unity but are not significantly different from zero either.

The evidence from Table 5 is thus broadly consistent with the earlier observation that the

predictive coefficient estimates, while close to their theoretical values, are associated with large

estimation error and that the weak statistical evidence of predictive power of µ series at a quarterly

horizon does not provide much information on their economic importance to investors with horizons

of twenty years or longer.

5.4 Historical Simulations

In this section we report the results of simulating the optimal and unconditional policies using

each of four µ series, A&B µ1,1, IL µ2,1, BGI µ3,2, and WA µ4,2, for a long horizon investor

with a relative risk aversion coefficient, γ, of 5. Allocations to stocks were revised quarterly, and

borrowing and short sale constraints were imposed. Under the unconditional strategies, the fraction

of the portfolio that is allocated to the risky asset is determined from equation (15) subject to the

constraint that 0 ≤ xu ≤ 1, and is constant over time. Under the constrained optimal strategy, the

fraction of wealth allocated to the risky asset is determined by solving an optimal control problem

whose value function depends on µ; it is described in Appendix A.

The return on the market portfolio is taken as the historical real (nominal) return on the S&P

500 index for each quarter and the riskless interest rate is taken as the realized real (nominal)

return on a 30-day Treasury from CRSP for the real µ1,1 and µ2,1 (the nominal µ3,2 and µ4,2).

The instantaneous return volatility, σP = 15.7% (17.1%), is determined from equation (5) by

setting Var(R(0.25)) equal to the sample volatility, 7.74% (8.40%), of quarterly S&P 500 index

real (nominal) return, when either µ1,1 or µ2,1 (µ3,2 or µ4,2) is used. The same value of σP is used

in both the optimal and the unconditional policies. The other parameters for the optimal policies

are taken from the appropriate line of Table 4, and the constant unconditional equity premium ȳ

for the unconditional policy is calculated from the corresponding µ̄ from Table 4.27 For both the

27The unconditional equity premium ȳ for the unconditional strategy was calculated in three different ways: (1)
using the same µ̄ as that used in calculating the optimal strategy; (2) setting ȳ to the sample mean of the S&P 500
Index excess return during the whole sample period of 1929 to 2002; and (3) setting ȳ to the gradually updated sample
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optimal and the unconditional strategies under the real µ (nominal µ), the risk free rate r is set

at a constant 1.1% (4.1%), which is the sample mean of the realized real (nominal) return of the

30-day Treasury Bill rate from 1950 to 2002.

Figures 6 and 7 summarize the results of the simulations under the real A&B µ1,1 and IL µ2,1.

For each figure the investor is assumed to be concerned with maximizing the expected utility of

wealth on the last date included in the figure. For example, Figure 6a describes the evolution

of wealth of an investor who starts investing at the end of the first quarter (or equivalently the

beginning of the second quarter) of 1950 with a horizon of the end of the first quarter of 1970;

thus his initial horizon is 20 years and decreases each period. Investment decisions are assumed

to be made at the beginning of each quarter based on the current value of µ. The figure shows

that an investor, who would have followed the optimal strategy based on µ1,1 over this period,

would have vastly outperformed his unconditional counterpart. Much the same pattern is visible

in Figure 7a which is based on µ2,1. Figures 6b and 7b show that the optimal strategies continue

to outperform the unconditional strategies but by a smaller margin over the subsequent 20-year

period 1970-1990. Both the µ1,1 and µ2,1 based strategies lose more in the oil-price related bear

market of 1974 on account of their more aggressive stock positions but more than make up for

this by the end of the period. A 12-year horizon investor over the period 1990-2002 does better

(about as well) under the optimal strategies than (as) under the unconditional strategy using µ1,1

(µ2,1) series. Finally, the simulations for an investor with a 52 year horizon starting in 1950 show

that the ‘optimal’ investor ends up well ahead. Since the µi,1 and µi,2 (i = 1, 2) series are trivially

different we do not report the results for the µ2 series.

Both the A&B and Ilmanen DDM series are constructed by projecting historical growth rates

of aggregate series such as profits or GDP. In contrast, the nominal BGI and WA DDM series

constructed by investment professionals relies on bottom-up forecasts of individual firm growth

rates. Figures 8 and 9 compare the (nominal) wealth outcomes from the unconditional vs. the

optimal strategy derived from BGI µ3,2 and WA µ4,2 series for the 20-year period 1973-1993 and

the 11-year period 1993-2003. In the first period, the wealth outcome under the optimal strategy

is 53-67% higher than that under the unconditional strategy: it is noteworthy that these strategies

do not suffer the large losses of the A&B and Ilmanen based strategies during 1974. For the

mean excess return with the initial value calculated from 1929 to 1949 (or 1972 for the BGI or WA series). The first

approach ensures that differences between the wealth realized under the optimal and the unconditional strategies are

not caused by different assumptions about the unconditional equity premium. Unconditional strategies based on (2)

and (3) have similar realized wealth as that based on (1) except for the period 1950-1970, during which unconditional

strategies based on (2) and (3) significantly outperform that based on (1) but still underperform the optimal strategy.

Since the relative performance of the optimal strategy is consistent across the three unconditional strategies, we only

report results of the unconditional strategy based on (1) and omit those based on (2) and (3) for brevity.
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11-year investment period 1993-2003, the optimal strategies based on both µ3,2 and µ4,2 series

underperform the unconditional ones by 10-20%. It is interesting to note that the unconditional

strategy outperforms the optimal strategies during the bubble period at the end of the 1990’s,

but that it substantially underperforms as the bubble collapses during the period 2000-2003: it is

precisely in such circumstances that we would expect that a dynamic strategy that takes account of

the long run expected rate of return implicit in asset prices to do well. Figures 8c and 9c compare

the outcome of the unconditional strategies with those of the optimal ones that start with a 30 year

horizon in 1973. Over this longer horizon, the optimal strategies show a consistent advantage.

Figure 10 plots the portfolio allocations for the WA estimates of µ4,2 for the different sub-

period strategies. The allocation to stocks under the unconditional strategy is about 48% while it

varies between 0 and 100% under the optimal dynamic strategy. The myopic allocation rises from

0 in 1973 to 100% by 1980, and then declines irregularly to 0 by 1998. The optimal dynamic

allocation is the sum of the myopic allocation and the hedge demand, which depends on both the

investment horizon and µ. The hedge demand is always positive and is large at the beginning

of each sub period when the investment horizon is long. For example, in September 1976, the

myopic demand is 55% and the hedging demand is 45% for an investor with a twenty-five year

horizon.

While we should be careful from inferring too much from these historical simulations which

represent only a single sample path of stock prices for a single level of risk aversion, it is encour-

aging that the optimal dynamic strategies tend to outperform naive unconditional strategies, even

when they are based on real time data.28

6 Conclusion

There is considerable disagreement about whether or not stock returns are time-varying and

predictable. On the one hand, there is ample evidence of in-sample return predictability from

regressions of stock returns on instruments such as the dividend yield and short term interest

rate, and from variance ratio tests. On the other hand, it has been argued that in-sample predic-

28The instantaneous expected returns estimated from the DDM long run expected returns depend on parameters of

the expected return µ and the dividend growth g processes, κµ, σµ, and ḡ etc. These parameters were estimated using
data from the whole sample period so that our estimates of instantaneous expected returns, even when they are based

on real time DDM estimates, rely on future data. For the A&B and IL series, we also estimated µ for the period of
1950-2002 by first estimating the parameters using data only from 1900 to 1949, and the superior performance of the

optimal strategy remains unchanged. We do not have long enough sample for the BGI and WA series, which are only

available starting from 1973, to carry out this robustness check.
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tive regressions perform poorly out of sample, so that the evidence of time variation should be

discounted.

In this paper, we have shown that time variation in expected returns that implies both large

variation in stock market valuation ratios and substantial gains to long term dynamic investment

strategies is likely to be hard to detect by standard statistical methods. As a result, weak statistical

evidence for return predictability does not in itself imply that return predictability is economically

insignificant.

In view of the difficulty of estimating expected returns from regressions of realized returns

on instruments such as the interest rate or dividend yield, we suggest that it is likely to be more

productive to estimate the expected long run rate of return by comparing the current level of

stock prices with forecasts of expected future dividends in the dividend discount model (DDM)

paradigm. This forward-looking approach has the advantage that it does not rely on hard-to-

estimate regression coefficients from past data. The disadvantage is that the rate of return that

emerges from the dividend discount rate model is a long run expected rate of return. In order to

use the DDM expected rate of return estimate in the dynamic portfolio planning, we show how

the instantaneous expected rates of return can be estimated from the DDM long run expected rate

of return under the assumption that the instantaneous expected rate of return follows an Ornstein-

Uhlenbeck process; the technique is also extended to a setting in which the expected growth rate

of dividends, instead of being constant, also follows an Ornstein-Uhlenbeck process.

Time series of expected rates of return are estimated for four time series of DDM expected

rates of return. Two of them are historical ‘back-casts,’ and two are real time estimates provided

by investment professionals. Simulations using realized S&P 500 index returns and the 30-

day Treasury bill rates suggest that there may be significant benefits from the use of expected

instantaneous rates of return derived from dividend discount model expected returns, even when

the expected returns are estimated in real time. In this paper, however, we have examined the

benefit of the optimal market timing strategy without taking account of misspecification of, or errors

in estimating, the stochastic process for the expected instantaneous rate of return. Determining the

sensitivity of DDM based dynamic portfolio strategies to errors in specifying and estimating the

stochastic process for the instantaneous expected return is a task for future work.
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Appendix

A. The Optimal Strategy

The investor is assumed to have an iso-elastic utility function defined over end-of-period wealth

at the investment horizon T :

max
x

E0


u (WT ) =





e−ρT W 1−γ
T

1−γ γ > 1,

e−ρT lnWT γ = 1.


 ,

subject to the following dynamic budget constraint:

dW

W
= [x (α + βµ − r) + r]dt + xσP dzP ,

where x is defined as the proportion of wealth invested in the single risky asset whose stochastic

process was given in equations (1-2). The risk free interest rate, r, is assumed to be constant for

simplicity.

Under the iso-elastic utility function, the indirect utility function, J(W, µ, t) ≡ maxxt Et [u (WT )],

is homogeneous in W :

J(W, µ, t) = e−ρt W
1−γ

1 − γ
φ(µ, t),

where φ satisfies the following Bellman equation:

0 = max
x

{
1
2
σ2

µφµµ + [κ (µ̄ − µ) + (1 − γ)xσPσµρPµ]φµ

+
[
(1 − γ) [x(α + βµ − r) + r]− ρ− 1

2
γ(1− γ)x2σ2

P

]
φ + φt

}
, (A1)

where φµµ ≡ ∂2φ
∂µ2 , φµ ≡ ∂φ

∂µ , and φt ≡ ∂φ
∂t are the partial derivatives of φ with respect to µ or t.

Denote the equity premium by yt ≡ α + βµt − r and the remaining investment horizon by

τ ≡ T − t, then the investor’s unconstrained optimal dynamic policy x∗
t is given by:

x∗
t =

yt

γσ2
P

+
ρPµσµ

γσP
[B(τ) + C(τ)yt] ,

and the function φ(µ, t) under the unconstrained optimal strategy is reduced to:

φo(µ, τ) = exp
{

A(τ) + B(τ)yt +
1
2
C(τ)y2

t

}

where A(τ), B(τ) and C(τ) are solutions to a system of three ordinary differential equations with
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boundary conditions of

A(τ) = 0, B(τ) = 0, and C(τ) = 0 at τ = 0.

The details of the equations are contained in Kim and Omberg (1996) for the general HARA utility

and in Xia (2001) for the CRRA utility.

In particular, let

a1 = (βσµ)2
(

1 +
1 − γ

γ
ρ2

Pµ

)
, (A2)

a2 = 2
(

(1− γ)βσµρPµ

γσP
− κ

)
, (A3)

a3 =
1 − γ

γσ2
P

, (A4)

then q ≡ a2
2 − 4a1a3 > 0 for all γ ≥ 1, which is the condition for the well-behaved normal case.

In this paper, we focus on dynamic strategies under γ > 1, so A(τ), B(τ) and C(τ) are given

by the normal solution:

C(τ) =
2a3 (1 − e−ητ )

(η − a2) + (η + a2)e−ητ
, (A5)

B(τ) =
4a3κ(α + βµ̄ − r)

(
1− e−

ητ
2

)2

η [(η − a2) + (η + a2)e−ητ ]
, (A6)

A(τ) =

[
a3

(
2κ2(α + βµ̄ − r)2

η2
+

(βσs)2

η − a2

)
+ r(1− γ)− ρ

]
τ

+
4a3κ

2(α + βµ̄ − r)2
[
(2a2 + η)e−ητ − 4a2e

− ητ
2 + 2a2 − η

]

η3 [(η − a2) + (η + a2)e−ητ ]

+
2a3(βσs)2

η2 − a2
2

ln
∣∣∣∣
(η − a2) + (η + a2)e−ητ

2η

∣∣∣∣ , (A7)

where η =
√

q.

If the optimal allocation x∗ is constrained to be between zero and one, i.e., no borrowing

or short-sale is allowed, then no closed-form solution is available. Both the constrained optimal

policy x∗ and the associated function φ are solved numerically from the Bellman equation (A1)

subject to the constraint 0 ≤ x∗ ≤ 1.
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B. The Unconditional Strategy

If the investor believes that the equity premium is constant, then the investment opportunity

set is constant from the investor’s perspective. The unconditional strategy,

xu =
α + βµ̄ − r

γσ2
P

=
ȳ

γσ2
P

,

is based on the long run mean of the equity premium. However, the wealth process of the investor

evolves according to the true dynamics of the equity premium given by equations (1-2):

dW

W
= [xu (α + βµ − r) + r]dt + xuσP dzP . (B1)

The indirect utility function Ju(W, µ, τ) is then given by:

Ju(W, µ, τ) = Et

[
e−ρT W 1−γ

T

1 − γ

]
= e−ρT W 1−γ

t

1 − γ
Et

[
exp

{
(1− γ)

(
ln

WT

Wt

)}]

= e−ρT W 1−γ
t

1 − γ
exp

{
Et

[
(1− γ)

(
ln

WT

Wt

)]
+

1
2
Vart

[
(1 − γ)

(
ln

WT

Wt

)]}
.

Solving for ln WT
Wt
and its first two conditional moments from equation (B1) gives the following

result:

Ju(W, µ, τ) = e−ρt W
1−γ
t

1 − γ
eD(τ)+E(τ)µt, (B2)

where

D(τ) = (1− γ)

[
r +

1
2

(xu)2
(

γσ2
P + (1 − γ)

β2σ2
µ

κ2
+ (1− γ)

2βσPµ

κ

)]
τ

− (1− γ)xuβ

[
µ̄ + (1 − γ)

xuβσ2
µ

κ2
+ (1 − γ)

xuσPµ

κ

]
1 − e−κτ

κ

+
1
2
(1− γ)2

x2
uβ2σ2

µ

κ2

1− e−2κτ

2κ
− ρτ, (B3)

E(τ) = (1− γ)xuβ
1 − e−κτ

κ
. (B4)
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C. The Myopic Strategy

If the investor has a short investment horizon, then it is optimal to adopt the myopic market-

timing strategy,

xm,t =
α + βµt − r

γσ2
P

.

The wealth process of the investor evolves according to the following dynamics:

dW

W
= [xm (α + βµt − r) + r]dt + xmσP dzP , (C1)

and the investor’s indirect expected utility function is given by

Jm(W, µ, t) = Et

[
e−ρT W 1−γ

T

1 − γ

]
= e−ρt W

1−γ
t

1 − γ
φm(µ, t), (C2)

where WT is determined via the wealth dynamics (C1).

Similar to the indirect utility function under the optimal strategy, we conjecture that the function

φm is of the form

φm = eAm(τ)+Bm(τ)y+ 1
2
Cm(τ)y2

. (C3)

where Am(τ), Bm(τ), and Cm(τ) are solutions to a system of ordinary differential equations

(ODE) similar to the case of the optimal strategy:

dCm

dτ
= am

1 (Cm)2 + am
2 Cm + am

3 , (C4)

dBm

dτ
= am

1 BmCm +
1
2
am

2 Bm + κ(α + βµ̄ − r)Cm, (C5)

dAm

dτ
=

1
2
am

1

(
Cm + (Bm)2

)
+ κ(α + βµ̄ − r)Bm + (1 − γ)r − ρ, (C6)

with the boundary conditions:

Am(τ) = 0, Bm(τ) = 0, and Cm(τ) = 0 at τ = 0.

This system of ODEs has exactly the same form of solutions as that under the optimal strategy,

but with slightly different coefficients, (am
1 , am

2 , am
3 ). In particular,

am
1 = β2σ2

µ 6= a1, am
2 = 2

[
(1 − γ)βσµρPµ

γσP
− κ

]
= a2, and am

3 =
1 − γ

γσ2
P

= a3,

where a2 and a3 are given in (A3-A4) in Appendix A. Therefore, the solution to Am(τ), Bm(τ),

30



and Cm(τ) has exactly the same expression as that given by equations (A5-A7) in Appendix A

except that a1 is replaced by am
1 and η is replaced by ηm ≡

√
a2

2 − 4am
1 a3.

D. The Optimal Buy-and-Hold Strategy

The dynamics of the stock price (with dividends reinvested) given in equations (1-2) implies

that the stock price at the time T conditional on information at t is:

PT = Pt exp

{(
α + βµ̄ − 1

2
σ2

P

)
(T − t) + β (µt − µ̄)

1− e−κ(T−t)

κ

+ βσµ

∫ T

t

1 − e−κ(T−s)

κ
dzµ(s) + σP

∫ T

t

dzP (s)

}
(D1)

The optimal buy-and-hold strategy, xb, which is the proportion of current wealth Wt invested

in the stock, then solves the following optimization problem by normalizing Wt to one dollar:

max
xb

Et




(
xb PT

Pt
+ (1 − xb)er(T−t)

)1−γ

1 − γ


 . (D2)

The strategy xb, the indirect utility Jb, and the certainty equivalent wealth CEW b are all solved

numerically.
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Table 1

Stock Return Model Parameters and Parameter Estimates

Panel A reports theoretical variance ratios calculated using equation (5) and the returns generated under each of the scenar-

ios. The historical data for 1871-1985 are from Table 3 of Poterba and Summers (1988) and those for 1871-2002 are calculated

using the real S&P 500 index returns from Robert Shiller’s website. Panels B-C report the distributions of statistics from ordinary

least squares predictive regressions with non-overlapping observations of the form

R(t, t + τ) = aτ + bτ µt + ε

for τ = 1, 12 months. The distributions are estimated from 2000 simulations of the return process given by equations (3) and (4)

for 840 months using the parameter values for each of 9 scenarios. Panels D-E report the bias-corrected regression coefficients and

their t−ratios using the Amihud-Hurvich (2004) approach where both the point estimate and the standard errors are adjusted. The
Stambaugh (1997) correction yields almost the same point estimates and is omitted from the table. The t−ratios are reported in
parentheses. The exogenous parameters are νµ = 4%, µ̄ = 7%, r = 1%,

√
Var(R(1)) = 14%, α = 0, and β = 1.

Scenarios (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

κ 0.02 0.02 0.02 0.10 0.10 0.10 0.50 0.50 0.50

σµ 0.008 0.008 0.008 0.018 0.018 0.018 0.040 0.040 0.040

ρPµ 0.00 -0.50 -0.90 0.00 -0.50 -0.90 0.00 -0.50 -0.90

σP 0.140 0.142 0.144 0.140 0.144 0.148 0.139 0.147 0.155

Panel A: Variance Ratios Historical

1871-1985 1871-2003

1 month(s) 1.00 1.03 1.05 1.00 1.05 1.10 0.98 1.10 1.20

6 1.00 1.01 1.03 1.00 1.03 1.05 0.99 1.05 1.10

1 year(s) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1.00 0.98 0.95 1.01 0.95 0.90 1.04 0.94 0.86 1.04 1.03

3 1.01 0.95 0.91 1.03 0.92 0.82 1.07 0.91 0.77 0.88 0.92

4 1.02 0.93 0.86 1.06 0.89 0.75 1.11 0.89 0.70 0.88 0.74

5 1.02 0.91 0.82 1.09 0.87 0.69 1.13 0.88 0.66 0.86 0.80

Panel B: One-month R2

Asymptotic 0.7% 0.7% 0.6% 0.7% 0.6% 0.6% 0.7% 0.6% 0.5%

25% 0.1% 0.2% 0.5% 0.2% 0.4% 0.6% 0.3% 0.3% 0.4%

Median 0.2% 0.4% 0.7% 0.5% 0.6% 0.8% 0.6% 0.6% 0.7%

Mean 0.3% 0.5% 0.7% 0.6% 0.7% 0.9% 0.7% 0.7% 0.7%

75% 0.5% 0.7% 1.0% 0.9% 1.0% 1.1% 1.0% 1.1% 1.0%

Panel C: Twelve-month R2

Asymptotic 7.4% 7.4% 7.4% 6.9% 6.9% 6.9% 4.8% 4.8% 4.8%

25% 0.6% 2.3% 5.4% 2.0% 3.7% 6.4% 1.7% 2.4% 3.3%

Median 2.3% 5.0% 7.9% 5.1% 6.8% 9.0% 4.6% 5.2% 6.0%

Mean 3.0% 6.9% 8.4% 6.6% 7.7% 9.5% 5.7% 6.4% 6.8%

75% 5.8% 8.5% 11.0% 9.6% 10.8% 12.1% 8.4% 9.2% 9.5%
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Table 1 (continued)

Panel D: One-month Bias-Corrected Regression Coefficient b

Theoretical bτ 0.083 0.083 0.083 0.083 0.083 0.083 0.082 0.082 0.082

(2.39) (2.36) (2.33) (2.38) (2.32) (2.27) (2.36) (2.23) (2.14)

25% 0.038 0.041 0.037 0.058 0.053 0.051 0.057 0.056 0.054

(0.58) (0.65) (0.65) (1.32) (1.28) (1.29) (1.56) (1.49) (1.44)

Median 0.082 0.082 0.081 0.085 0.081 0.080 0.081 0.080 0.078

(1.27) (1.26) (1.22) (2.05) (1.88) (1.81) (2.29) (2.10) (1.94)

Mean 0.082 0.094 0.101 0.085 0.086 0.089 0.081 0.082 0.082

(1.31) (1.26) (1.21) (2.05) (1.88) (1.81) (2.29) (2.11) (1.97)

75% 0.127 0.133 0.146 0.112 0.113 0.117 0.104 0.107 0.107

(2.08) (1.87) (1.79) (2.80) (2.48) (2.30) (2.96) (2.76) (2.52)

Panel E: Twelve-month Bias-Corrected Regression Coefficient b

25% 0.453 0.491 0.419 0.654 0.595 0.575 0.495 0.481 0.464

(0.56) (0.65) (0.62) (1.22) (1.20) (1.22) (1.11) (1.09) (1.08)

Median 0.987 0.980 0.933 0.974 0.924 0.910 0.778 0.761 0.741

(1.28) (1.22) (1.18) (1.93) (1.78) (1.74) (1.83) (1.74) (1.66)

Mean 0.987 1.113 1.170 0.971 0.963 1.005 0.787 0.791 0.784

(1.30) (1.25) (1.19) (1.96) (1.81) (1.77) (1.83) (1.78) (1.69)

75% 1.549 1.587 1.717 1.314 1.283 1.337 1.059 1.080 1.070

(2.04) (1.87) (1.78) (2.73) (2.42) (2.29) (2.51) (2.41) (2.26)
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Table 2

Stock Return Models and Valuation Ratios

This table reports valuation ratios for a security whose dividend follows:

dD

D
= gdt + σDdzD

and the expected rate of return on the security follows an Ornstein-Uhlenbeck process:

dµ = κ(µ̄ − µ)dt + σµdzµ.

The parameters of the real dividend growth rate process, g = 0.86% and σD = 12.02%, are taken as the sample mean and volatility

of the real dividend growth rates from 1950 to 2002, provided by Robert Shiller. The two correlations for each scenario, ρDµ, are

chosen so that the volatility of the real stock return is approximately 14%. Results are reported only for scenarios (iii), (vi), and (ix),

because it was not possible to generate stock return volatility of 14% in the other scenarios. The exogenous parameters are νµ = 4%,

µ̄ = 7%, r = 1%,
√

Var(R(1)) = 14%, α = 0, and β = 1.

Scenarios (iii) (vi) (ix)

κ 0.02 0.10 0.50

σµ 0.008 0.018 0.040

ρPµ -0.90 -0.90 -0.90

σP 0.144 0.148 0.155

ρDµ 0.679 -0.679 0.655 -0.655 0.610 -0.610

Panel A: Price Dividend Ratios

µt = µ̄ − νµ = 3% 31.39 64.01 21.03 27.01 16.91 19.00

µt = µ̄ = 7% 17.05 27.54 16.46 20.86 15.80 17.76

µt = µ̄ + νµ = 11% 10.79 13.86 12.96 16.11 14.74 16.56

Panel B: Dividend Yields

µt = µ̄ − νµ = 5% 3.2% 1.6% 4.8% 3.7% 5.9% 5.3%

µt = µ̄ = 9% 5.9% 3.6% 6.1% 4.8% 6.3% 5.6%

µt = µ̄ + νµ = 13% 9.3% 7.2% 7.7% 6.2% 6.8% 6.0%

38



Table 3a

Long Run Return Predictability and the Value of Dynamic versus Unconditional Strate-
gies

This table reports the theoretical values under different scenarios of R2 from regressions of long run returns on the value

of µ at the beginning of the period. It also reports the ratios of the certainty equivalent wealth for an optimal dynamic strategy to the

certainty equivalent wealth under an unconditional strategy for different horizons and initial values of µt. The exogenous parameters

are νµ = 4%, µ̄ = 7%, r = 1%,
√

Var(R(1)) = 14%, α = 0, and β = 1. The risk aversion parameter is γ = 5.

Horizon Scenarios (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

κ 0.02 0.02 0.02 0.10 0.10 0.10 0.50 0.50 0.50

σµ 0.008 0.008 0.008 0.018 0.018 0.018 0.040 0.040 0.040

ρPµ 0.00 -0.50 -0.90 0.00 -0.50 -0.90 0.00 -0.50 -0.90

σP 0.140 0.142 0.144 0.140 0.144 0.148 0.139 0.147 0.155

1 year R2 7.4% 7.4% 7.4% 6.9% 6.9% 6.9% 4.8% 4.8% 4.8%

µt = 0.03 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01

µt = 0.07 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

µt = 0.11 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01

5 years R2 26.5% 28.8% 31.0% 18.8% 22.4% 26.8% 4.6% 5.9% 7.8%

µt = 0.03 1.04 1.03 1.03 1.05 1.03 1.02 1.05 1.04 1.04

µt = 0.07 1.00 1.00 1.01 1.02 1.02 1.03 1.03 1.04 1.05

µt = 0.11 1.04 1.06 1.08 1.03 1.06 1.11 1.04 1.06 1.09

10 years R2 38.0% 44.1% 50.7% 20.4% 27.8% 39.8% 2.6% 3.6% 5.6%

µt = 0.03 1.10 1.06 1.04 1.11 1.07 1.07 1.09 1.09 1.13

µt = 0.07 1.02 1.02 1.04 1.05 1.06 1.13 1.08 1.09 1.15

µt = 0.11 1.06 1.14 1.25 1.06 1.14 1.35 1.08 1.11 1.20

20 years R2 45.6% 56.8% 71.1% 15.9% 24.6% 46.1% 1.3% 1.9% 3.3%

µt = 0.03 1.27 1.14 1.09 1.30 1.17 1.29 1.20 1.19 1.36

µt = 0.07 1.07 1.07 1.25 1.19 1.16 1.57 1.18 1.20 1.39

µt = 0.11 1.09 1.32 2.16 1.16 1.27 2.25 1.18 1.22 1.46

40 years R2 43.7% 58.0% 79.3% 8.8% 15.2% 38.3% 0.6% 1.0% 1.8%

µt = 0.03 2.17 1.46 1.42 1.90 1.43 2.32 1.43 1.45 2.00

µt = 0.07 1.50 1.27 2.43 1.70 1.42 3.25 1.41 1.45 2.05

µt = 0.11 1.29 1.58 9.02 1.62 1.56 5.47 1.41 1.48 2.14
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Table 3b

Long Run Return Predictability and the Value of Dynamic versus Myopic Strategies

This table reports the theoretical values under different scenarios of R2 from regressions of long run returns on the value

of µ at the beginning of the period. It also reports the ratios of the certainty equivalent wealth for an optimal dynamic strategy to

the certainty equivalent wealth under a myopic strategy for different horizons and initial values of µt. The exogenous parameters are

νµ = 4%, µ̄ = 7%, r = 1%,
√

Var(R(1)) = 14%, α = 0, and β = 1. The risk aversion parameter is γ = 5.

Horizon Scenarios (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

κ 0.02 0.02 0.02 0.10 0.10 0.10 0.50 0.50 0.50

σµ 0.008 0.008 0.008 0.018 0.018 0.018 0.040 0.040 0.040

ρPµ 0.00 -0.50 -0.90 0.00 -0.50 -0.90 0.00 -0.50 -0.90

σP 0.140 0.142 0.144 0.140 0.144 0.148 0.139 0.147 0.155

1 year R2 7.4% 7.4% 7.4% 6.9% 6.9% 6.9% 4.8% 4.8% 4.8%

µt = 0.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

µt = 0.07 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

µt = 0.11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5 years R2 26.5% 28.8% 31.0% 18.8% 22.4% 26.8% 4.6% 5.9% 7.8%

µt = 0.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01

µt = 0.07 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.01

µt = 0.11 1.00 1.00 1.00 1.00 1.00 1.02 1.00 1.00 1.02

10 years R2 38.0% 44.1% 50.7% 20.4% 27.8% 39.8% 2.6% 3.6% 5.6%

µt = 0.03 1.00 1.00 1.00 1.00 1.00 1.02 1.00 1.01 1.04

µt = 0.07 1.00 1.00 1.02 1.00 1.01 1.06 1.00 1.01 1.05

µt = 0.11 1.00 1.01 1.04 1.00 1.02 1.12 1.00 1.01 1.06

20 years R2 45.6% 56.8% 71.1% 15.9% 24.6% 46.1% 1.3% 1.9% 3.3%

µt = 0.03 1.00 1.01 1.04 1.00 1.02 1.20 1.00 1.02 1.12

µt = 0.07 1.00 1.02 1.16 1.00 1.04 1.38 1.00 1.02 1.13

µt = 0.11 1.00 1.05 1.41 1.00 1.06 1.66 1.00 1.02 1.14

40 years R2 43.7% 58.0% 79.3% 8.8% 15.2% 38.3% 0.6% 1.0% 1.8%

µt = 0.03 1.00 1.04 1.35 1.00 1.08 2.10 1.00 1.05 1.31

µt = 0.07 1.00 1.09 2.32 1.00 1.11 2.76 1.00 1.05 1.33

µt = 0.11 1.00 1.20 5.56 1.00 1.14 3.86 1.00 1.05 1.34
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Table 3c

Long Run Return Predictability and the Value of Dynamic versus Buy-and-Hold Strate-
gies

This table reports the theoretical values under different scenarios of R2 from regressions of long run returns on the value

of µ at the beginning of the period. It also reports the ratios of the certainty equivalent wealth for an optimal dynamic strategy to

the certainty equivalent wealth under an optimal buy-and-hold strategy for different horizons and initial values of µt. The exogenous

parameters are νµ = 4%, µ̄ = 7%, r = 1%,
√

Var(R(1)) = 14%, α = 0, and β = 1. The risk aversion parameter is γ = 5.

Horizon Scenarios (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

κ 0.02 0.02 0.02 0.10 0.10 0.10 0.50 0.50 0.50

σµ 0.008 0.008 0.008 0.018 0.018 0.018 0.040 0.040 0.040

ρPµ 0.00 -0.50 -0.90 0.00 -0.50 -0.90 0.00 -0.50 -0.90

σP 0.140 0.142 0.144 0.140 0.144 0.148 0.139 0.147 0.155

1 year R2 7.4% 7.4% 7.4% 6.9% 6.9% 6.9% 4.8% 4.8% 4.8%

µt = 0.03 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01

µt = 0.07 1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.02

µt = 0.11 1.02 1.02 1.02 1.02 1.02 1.03 1.03 1.03 1.03

5 years R2 26.5% 28.8% 31.0% 18.8% 22.4% 26.8% 4.6% 5.9% 7.8%

µt = 0.03 1.02 1.02 1.01 1.04 1.04 1.05 1.08 1.09 1.10

µt = 0.07 1.07 1.08 1.09 1.08 1.10 1.12 1.10 1.12 1.14

µt = 0.11 1.14 1.15 1.16 1.13 1.16 1.18 1.12 1.15 1.17

10 years R2 38.0% 44.1% 50.7% 20.4% 27.8% 39.8% 2.6% 3.6% 5.6%

µt = 0.03 1.04 1.05 1.05 1.10 1.13 1.18 1.19 1.24 1.32

µt = 0.07 1.16 1.19 1.24 1.17 1.23 1.36 1.21 1.27 1.36

µt = 0.11 1.29 1.35 1.43 1.26 1.36 1.53 1.24 1.30 1.42

20 years R2 45.6% 56.8% 71.1% 15.9% 24.6% 46.1% 1.3% 1.9% 3.3%

µt = 0.03 1.11 1.15 1.21 1.24 1.38 1.76 1.44 1.59 1.90

µt = 0.07 1.31 1.47 1.83 1.34 1.56 2.27 1.46 1.63 1.96

µt = 0.11 1.56 1.88 2.57 1.48 1.81 2.92 1.51 1.68 2.05

40 years R2 43.7% 58.0% 79.3% 8.8% 15.2% 38.3% 0.6% 1.0% 1.8%

µt = 0.03 1.27 1.47 2.11 1.58 2.09 4.81 2.11 2.65 3.97

µt = 0.07 1.55 2.12 5.24 1.70 2.40 6.73 2.15 2.71 4.07

µt = 0.11 2.00 3.28 15.66 1.92 2.91 10.28 2.22 2.81 4.25
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Table 4

Parameter Estimates of the µ series

This table reports the parameter estimates associated with the instantaneous expected return, µ, series, which are derived

from the long run discount rate k. The two real k series are calculated in Arnott and Bernstein (2002) (A&B) and Ilmanen (2002)

(IL), while the two nominal k series are provided by Barclays Global Investors (BGI) and Wilshire Associates (WA). In each k

series, we derive µ under two cases. In Case I, the dividend growth rate g is assumed to be a constant. In Case II, the dividend

growth rate g is assumed to follow a mean-reverting process. When the real k from Ilmanen or A&Bis used as the long run discount

rate, g is set to 0.86% in the first case, while ḡ is set to 0.86% in the second case. When the nominal k is used, g is set to 4.82% in

the first case, while ḡ is set to 4.82% in the second case.

Parameters κµ σµ µ̄ νµ ρPµ σD ρµD κg σg ρµg ρDg

Scenario (vi) Table 2

0.100 0.0180 0.090 0.0400 -0.900 0.1200 -0.879

Real Models

A&B µ1,1 0.085 0.0173 0.047 0.0419 -0.977 0.0852 -0.126

A&B µ1,2 0.083 0.0172 0.045 0.0423 -0.981 0.0776 -0.106 0.103 0.0090 0.328 -0.413

IL µ2,1 0.122 0.0196 0.066 0.0397 -0.884 0.0852 -0.117

IL µ2,2 0.115 0.0224 0.066 0.0467 -0.885 0.0822 -0.066 0.025 0.0034 0.379 -0.055

Nominal Models

BGI µ3,1 0.091 0.0239 0.133 0.0560 -0.812 0.0859 0.234

BGI µ3,2 0.085 0.0214 0.113 0.0519 -0.657 0.2076 0.249 0.209 0.0294 0.378 -0.326

WA µ4,1 0.122 0.0336 0.137 0.0680 -0.682 0.0859 0.095

WA µ4,2 0.095 0.0266 0.111 0.0611 -0.714 0.2202 0.209 0.220 0.0339 0.402 -0.417
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Table 5

Quarterly Return Prediction

This table reports the results of regressing real and nominal quarterly returns on the S&P500 stock index on forecasts of

the return at the beginning of the quarter calculated from the estimated value of µi,2 (i = 1,2, 3,4) and the estimated parameters of
the joint stochastic process using equation.

R(t, t + 0.25) = a0 + a1

[
1.0− e−κ/4

κ

]
µi,2

t + εt, i = 1,2, 3,4,

where R(t, t + 0.25) is the one quarter real return on the S&P500 index in Panel A and is the corresponding nominal return in Panel

B. In Panel A, the real return on the S&P 500 index is regressed on the estimated real A&B and IL µi,2 (i = 1,2) series. In Panel

B, nominal returns on the index is regressed on the estimated nominal BGI and WA µi,2 (i = 3,4) series. The OLS t− ratios are

reported in parenthesis and the Newey-West adjusted t−ratios are in brackets.

A. Real Return Predictive Regressions

µ1,2 as Predictor µ2,2 as Predictor

Sample Period Obs. a0 a1 R2(%) a0 a1 R2(%)

1. 1950.2-2002.2 209 0.005 0.874 1.43 0.009 0.701 1.12

(0.46) (1.74) (0.86) (1.53)

[0.43] [1.60] [0.79] [1.27]

2. 1950.2-1974.2, 208 0.005 0.981 1.94 0.008 0.800 1.57

1974.4-2000.2 (0.43) (2.02) (0.85) (1.81)

[0.38] [1.83] [0.75] [1.50]

3. 1950.2-1974.2 97 -0.019 2.157 4.37 -0.020 1.961 5.79

(0.92) (2.08) (1.09) (2.42)

[1.04] [2.45] [1.06] [2.21]

4. 1974.4-2002.2 111 0.011 0.708 1.35 0.017 0.494 0.70

(0.82) (1.22) (1.40) (0.88)

[1.07] [1.86] [2.36] [1.80]

B. Nominal Return Predictive Regressions

µ3,2 as Predictor µ4,2 as Predictor

Sample Period Obs. a0 a1 R2 a0 a1 R2

1. 1973.2-2002.2 117 0.003 1.026 2.89 0.006 0.924 2.74

(0.20) (1.86) (0.37) (1.80)

[0.18] [1.69] [0.34] [1.66]

2. 1973.2-1974.2, 116 0.008 0.953 2.75 0.010 0.852 2.57

1974.4-2000.2 (0.48) (1.80) (0.67) (1.73)

[0.41] [1.60] [0.54] [1.42]
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Figure 1

Theoretical R2 as a Function of the Horizon

The figure plots the theoretical regression R2 as a function of the investment horizon τ , where τ varies from 0.08 (one month) to 20
years for the nine scenarios reported in Table 1. The exogenous parameters are νµ = 4%, µ̄ = 9%, r = 3%,

√
Var(R(1)) = 14%,

α = 0, and β = 1.
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Figure 2

Theoretical Ten- and Twenty-Year R2 Versus the One-Year R2

The figure plots the theoretical regression R2 at long horizon (ten and twenty years) as a function of the one-year R2 for the nine

scenarios reported in Table 1. The exogenous parameters are νµ = 4%, µ̄ = 9%, r = 3%,
√

Var(R(1)) = 14%, α = 0, and
β = 1.
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Figure 3

The Certainty Equivalent Wealth Ratio under the Optimal and the Unconditional Strategies for a

Twenty-Year Horizon Versus the One-Year Predictive Regression R2

The figure plots the certainty equivalent wealth ratios between the optimal and the unconditional strategies for a twenty-year horizon

investor, CEWRou , as a function of the one-year R2 for the nine scenarios reported in Table 1. The initial value of µ is set at
respectively 5%, 9% and 13%. The exogenous parameters are νµ = 4%, µ̄ = 9%, r = 3%,

√
Var(R(1)) = 14%, α = 0, and

β = 1.
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Figure 4

Estimates of the Real µ Series

Panel a plots the long run expected real return k1 from Arnott and Bernstein (2002) (A&B) together with the estimated time series

of µ1,1 and µ1,2 , corresponding to the two cases of constant g and mean-reverting g. Panel b plots the long run expected real return
k2 from Ilmanen (2003) (IL) together with the estimated time series of µ2,1 and µ2,2 , corresponding to the two cases of constant g

and mean-reverting g. The period is from the 1st quarter of 1950 to the 2nd quarter of 2002 in both panels.
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Figure 5

Estimates of the Nominal µ Series

Panel a plots the long run expected nominal return k3 from Barclays Global Investors (BGI) together with the estimated time series

of µ3,1 and µ3,2 , corresponding to the two cases of constant g and mean-reverting g. Panel b plots the long run expected nominal
return k4 from Wilshire Associates (WA) together with the estimated time series of µ4,1 and µ4,2 , corresponding to the two cases

of constant g and mean-reverting g. The period in Panel a is from the 4th quarter of 1972 to the 1st quarter of 2002 while it is from
the 1st quarter of 1973 to the 1st quarter of 2004.
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Figure 6

Cumulative Real Wealth under Optimal and Unconditional Strategies for a Long Horizon Investor

(µ1,1 as the Predictor)

The figure plots the cumulative real wealth under the optimal and the unconditional strategy for long horizon investors with a risk

aversion parameter γ = 5. The optimal strategy is based on the estimated real A&B µ1,1 series and its associated parameter

estimates. Both the optimal and the unconditional strategies are constrained to have allocations between 0 and 1. In Panel a, the

investment horizon is 20 years and the investor starts investing in 1950.1 with a terminal date in 1970.1. In Panel b, the investment

horizon is also 20 years and the investor starts investing in 1970.1 with a terminal date in 1990.1. In Panel c, the investment horizon

is 13 years and the investor starts investing in 1990.1 with a terminal date in 2002.2. In Panel d, the horizon is 53 years and the

investor starts investing in 1950.1 with a terminal date in 2002.2.

1950.06 1956.06 1962.06 1968.06
0

1

2

3

4

5

6

7

8

9

10
a: 1950.06 − 1970.03

1970.06 1976.06 1982.06 1988.06
0

0.5

1

1.5

2

2.5

3
b: 1970.06 − 1990.03

1990.06 1994.06 1998.06 2002.06
0

0.5

1

1.5

2

2.5

3
c: 1990.06 − 2002.06

1950.06 1960.06 1970.06 1980.06 1990.06 2000.06
0

5

10

15

20

25

30

35

40
d: 1950.06 − 2002.06

Unconditional
Optimal

Unconditional
Optimal

Unconditional
Optimal

Unconditional
Optimal

49



Figure 7

Cumulative Real Wealth under Optimal and Unconditional Strategies for a Long Horizon Investor

(µ2,1 as the Predictor)

The figure plots the real wealth under the optimal and the unconditional strategy for long horizon investors with a risk aversion

parameter γ = 5. The optimal strategy is based on the estimated real IL µ2,1 series and its associated parameter estimates. Both the

optimal and the unconditional strategies are constrained to have allocations between 0 and 1. In Panel a, the investment horizon is

20 years and the investor starts investing in 1950.1 with a terminal date in 1970.1. In Panel b, the investment horizon is also 20

years and the investor starts investing in 1970.1 with a terminal date in 1990.1. In Panel c, the investment horizon is 13 years and

the investor starts investing in 1990.1 with a terminal date in 2002.2. In Panel d, the horizon is 53 years and the investor starts

investing in 1950.1 with a terminal date in 2002.2.
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Figure 8

Cumulative Nominal Wealth under Optimal and Unconditional Strategies for a Long Horizon

Investor

(µ3,2 as the Predictor)

The figure plots the cumulative nominal wealth under the optimal and the unconditional strategy for long horizon investors with a

risk aversion parameter γ = 5. The optimal strategy is based on the estimated nominal BGI µ3,2 series and its associated parameter

estimates. Both the optimal and the unconditional strategies are constrained to have allocations between 0 and 1. In Panel a, the

investment horizon is 20 years and the investor starts investing in 1972.4 with a terminal date in 1992.4. In Panel b, the investment

horizon is around 10 years and the investor starts investing in 1992.4 with a terminal date in 2002.1. In Panel c, the investment

horizon is about 30 years and the investor starts investing in 1972.4 with a terminal date in 2002.1.
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Figure 9

Cumulative Nominal Wealth under Optimal and Unconditional Strategies for a Long Horizon

Investor

(µ4,2 as the Predictor)

The figure plots the cumulative nominal wealth under the optimal and the unconditional strategy for long horizon investors with a

risk aversion parameter γ = 5. The optimal strategy is based on the estimated nominal WA µ4,2 series and its parameter estimates.

Both the optimal and the unconditional strategies are constrained to have allocations between 0 and 1. In Panel a, the investment

horizon is 20 years and the investor starts investing in 1973.1 with a terminal date in 1993.1. In Panel b, the investment horizon is

around 10 years and the investor starts investing in 1993.1 with a terminal date in 2002.2. In Panel c, the investment horizon is

about 30 years and the investor starts investing in 1973.1 with a terminal date in 2002.2.
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Figure 10

The Unconditional, the Myopic, and the Optimal Stock Allocations for a Long Horizon Investor

(µ4,2 as the Predictor)

The figure plots the proportion of wealth allocated to stocks under the unconditional, the myopic, and the optimal strategies for long

horizon investors with a risk aversion parameter γ = 5. The optimal strategy is based on the estimated nominal WA µ4,2 series and

its parameter estimates. Both the optimal and the unconditional strategies are constrained to have allocations between 0 and 1. In

Panel a, the investment horizon is 20 years and the investor starts investing in 1973.1 with a terminal date in 1993.1. In Panel b, the

investment horizon is around 10 years and the investor starts investing in 1993.1 with a terminal date in 2002.2. In Panel c, the

investment horizon is about 30 years and the investor starts investing in 1973.1 with a terminal date in 2002.2.
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