Norwegian School of Economics and Business Administration

ON STRUCTURAL MODELS OF DEBT

Hayne Leland University of California, Berkeley

> June 2007 © Hayne Leland All Rights Reserved

I want to focus on three specific topics

- 1) What are the <u>shortcomings of "traditional" structural models</u> in explaining credit spreads and default probabilities?
- 2) Can jump processes and/or liquidity premiums remedy these problems?
- 3) What are the resulting <u>implications for corporate decisions</u>, with a specific focus on optimal leverage choice.

Let's start with a typical "traditional" model...

(this has many predecessors, starting with Merton (1974))

1) Asset value process under the risk-neutral measure

$$dV(t)/V(t) = (r - \delta)dt + \sigma dW(t)$$

...a diffusion process with continuous sample path, where

- V(t) asset value (value of cash flows) at time t
 - *r* risk-free interest rate, assumed constant through time
 - δ fractional (of value) payout rate to all securities, a constant
 - σ asset volatility, also a constant
- dW(t) increment to a Wiener process at time t $V(0) - V_0$

 $V(0)=V_0$

2) Debt

Characterized by *principal P*, *coupon flow C*, *maturity T*

Other important parameters are *default cost fraction* α and *tax rate* τ (implying the after-tax coupon cost is $(1 - \tau)C$)

Exponential debt model: for debt issued at time t = 0

- > Debt principal is *retired at a proportional rate* m = 1/T (e.g. through sinking fund)
- > This implies that debt principal and coupon are *exponentially declining*; thus remaining principal, coupon of debt issued at t = 0 are $e^{-mt}P$, $e^{-mt}C$
- > This also implies that the *average maturity of debt* = 1/m = T.
- > Retired debt is replaced by newly-issued debt with same principal, coupon, and maturity; thus total P, C, T remain constant through time.
- > Total debt service flow is constant C + mP, unless default

RISK NEUTRAL VALUATION OF DEBT

• The *discounted expected value of current debt's cash flow* under the risk neutral measure is

$$D = \int_{0}^{\infty} e^{-rt} \left[e^{-mt} (C + mP) \right] (1 - F) dt + (1 - \alpha) V_B \int_{0}^{\infty} e^{-rt} e^{-mt} f dt$$
(1)

where *F* is the *cumulative distribution function of first passage time* from V_0 to a default barrier V_B , and *f* is its *density function*.

Integrating the first term of (1) by parts gives

$$D = \frac{C + mP}{r + m} (1 - \int_{0}^{\infty} e^{-(r + m)t} f \, dt) + (1 - \alpha) V_B \int_{0}^{\infty} e^{-(r + m)t} f \, dt$$
(2)

• We now use the *only mathematical result* we will need for the paper.

For processes with constant drift g and volatility σ :

The expected present value of \$1 received at first passage to default V_B (from value V_0 at t = 0), when discounted at an arbitrary rate z, is

$$\int_{0}^{\infty} e^{-zt} f(t; V_0, V_B) dt = \left(\frac{V_0}{V_B}\right)^{-y(g,z)},$$

where

$$y(g,z) = \frac{(g - .5\sigma^2) + ((g - .5\sigma^2)^2 + 2z\sigma^2)^{0.5}}{\sigma^2}$$
(3)

Using (3), the value of debt in equation (2) is

$$D = \frac{C + mP}{r + m} (1 - \left(\frac{V_0}{V_B}\right)^{-y_1}) + (1 - \alpha)V_B \left(\frac{V_0}{V_B}\right)^{-y_1}$$
(4)

where $y_1 = y(g, z)$ in (3) when $g = r - \delta$ and z = r + m.

NB: when m = 0 (infinite life debt), (4) is the same formula as in Leland (1994).

• We can also readily compute closed form solutions for

> The value of equity E

> The total value of firm leveraged firm v = D + E.

• The endogenous optimal default boundary V_B , satisfies the smooth-pasting conditions $\frac{\partial E(V;V_B)}{\partial V}|_{V=V_B} = 0$

• The optimal endogenous default barrier V_B is:

$$V_{B} = \frac{\frac{(C+mP)y_{1}}{(r+m)} - \frac{\tau Cy}{r}}{1 + (1-\alpha)y_{1} + \alpha y}$$
(5)

where y = y(g, z) in (3) when $g = r - \delta$ and z = r.

• Substituting for V_B into (4) gives closed form solution for D (and E and v).

Default probabilities can be easily calculated:

Cumulative first passage times to V_B , with $g = r - \delta + \pi$ where $\pi = asset$ risk premium $\Rightarrow g = actual$ asset growth rate

HOW WELL DOES THE MODEL PREDICT? CALIBRATION:

_		Rating		Sources
	Α	Baa	В	
Leverage D/v	32.0%	43.3%	65.7%	HH; CGH
Average Debt Maturity T	10 yrs.	7.5 yrs.	5 yrs.	HH; Duffee, Stohs & Maurer
Asset Volatility σ	22%	22%	31%	Schaefer & Strebulaev (2004)
Payout Rate δ	6%	6%	6%	HH (avg. of dividends, coupons 1973-98)
Tax Advantage to Debt $ au$	15%	15%	15%	Leland & Toft (1996), Graham (2003)
Default Costs α	30%	30%	30%	Consistent with recovery rates, all ratings
Asset Risk Premium	4%	4%	4%	Consistent with asset beta about 0.6, all ratings
Recovery Ratio	60%	50%	40%	EG (60.6%, 49.4%, 37.5%); HH (51.3% for all)

TABLE 2: CALIBRATION OF MODEL PARAMETERS

EG = Elton & Gruber (2001), HH = Huang & Huang (2003), CGH = Collin-Dufresne, Goldstein & Helwege (2003)

Using these parameters, let's see how well model matches observed spreads from H&H, E&G, and Duffee over 1985-1995, and default data from Moody's over the period 1970-2000.

>> Unlike H&H, we do *not* choose volatilities to match default rates

HOW WELL DOES THE MODEL DO? NOT WELL!!

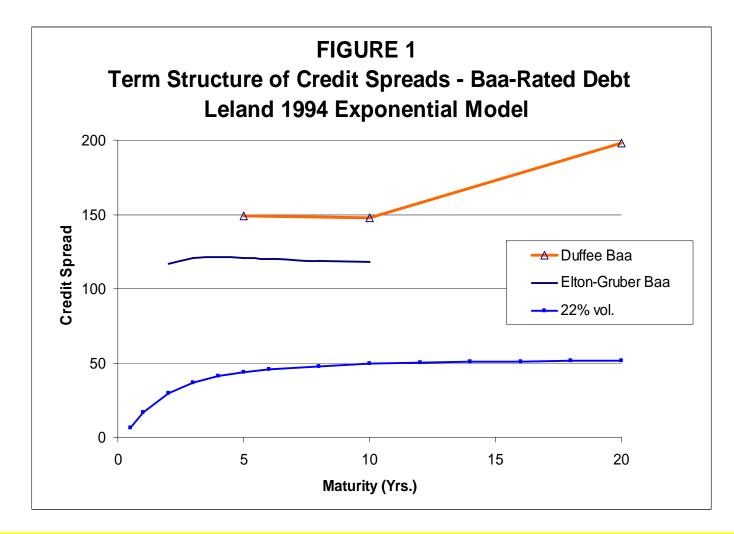


FIGURE 1 shows model predicts Baa spreads that are about 1/3 of actual. . .

- Confirms most empirical studies that traditional structural models *underestimate spreads*. (e.g. Jones, Mason, Rosenfeld (1984), Huang & Huang (2004))
- But a widely-cited article by Eom, Helwege and Huang (*EHH*, 2004) claims that the structural model of Leland and Toft (*LT*, 1996)

---substantially overestimates spreads, even at short maturities.

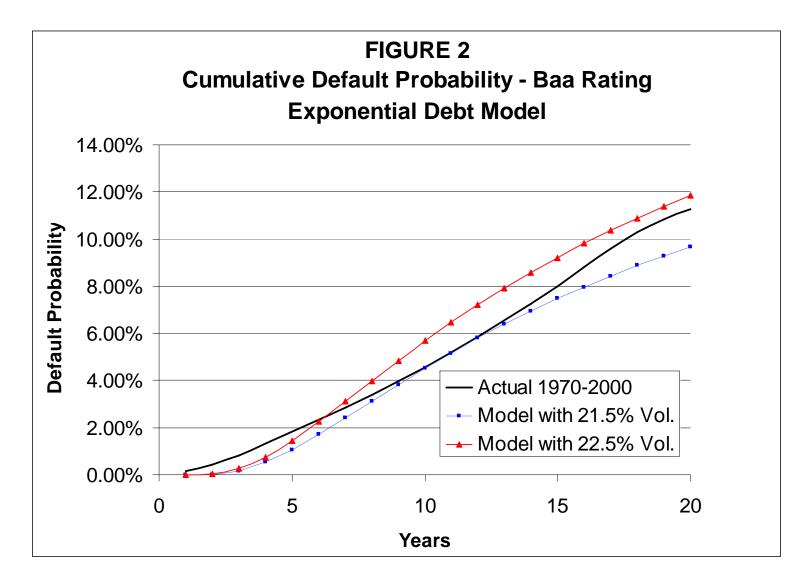
—This is very strange! For their parameters, quite similar to those here, <u>I find *LT underestimates spreads*</u>. I can't replicate *EHH* results.

• **A Possible Explanation** (EG, HH): Spreads also reflect illiquidity

--But Leland (JOIM, 2004) notes that *probabilities of default should <u>not</u> be affected by bond market illiquidity*

---In contrast with bond market prices (and spreads)

Let's see if the model predicts *cumulative default probabilities* accurately:



 For longer horizons (t > 7 yrs.), default probabilities OK: are bounded above by model when σ = 22.5% and below when σ = 21.5% (Recall S&S estimate for Baa firms: σ = 22%)

....But default probabilities are far too low at short horizons!

(< 50% of actual when $t \le 4$ yrs.)

 Observation: Even if illiquidity might explain too-low model spreads, it can't explain too-low short-term default predictions.

• **The Problem**: a pure diffusion process for firm value!

---Spreads and default rates $\rightarrow 0$ as $t \rightarrow 0$. (e.g. Lando (2004), pp. 14-15).

• A Possible Answer: Include jumps in asset value

This is certainly not the first credit-risk model to consider jumps:

Credit risk (Zhou (2001), Duffie and Lando (2001), Hilberink & Rogers (2002), Giesecke & Goldberg (2003), H & H (2004), Chen & Kou (*CK*, 2005))

Regime changes (Hackbarth, Miao & Morellec (*HMM*, 2006))

• But most of these models are quite complex, and require numerical techniques to find solutions

• We consider a very simple mixed jump-diffusion process for asset value:

$$\frac{dV}{V} = (r - \delta + \lambda k)dt + \sigma \, dW \text{ with probability} (1 - \lambda dt)$$
$$= -k \qquad \text{with probability } \lambda dt, \quad 0 \le k \le 1$$

- Must adjust the *drift* of the diffusion to $g = r \delta + \lambda k$ to compensate for the jump, keep expected return rate = $r - \delta$
- Adjust the *volatility* of the diffusion to $\sigma = (\sigma_L^2 \lambda k^2)^{0.5}$ (keeping long-horizon total volatility σ_L constant)
- A jump here represents a relatively rare "disaster",
 - ---The firm loses a large fraction of its value and *liquidates* (Enron, Refco?)
 - ---Note that unlike pure diffusion models, the recovery rate is random since V is random when a jump occurs

• Are jumps "rare"? Collin-Dufresne, Goldstein, Helwege (CGH, 2003):

"In practice, very few firms 'jump' to default. Indeed, since 1937, we are aware of only <u>four firms</u> that have defaulted on a bond which had an investment grade rating from Moody's."

---We <u>don't</u> estimate the firm value process—just look at *consequences if there were a rare jump* on debt values, and default probabilities.

>> Observed default and recovery rates can be explained by an assumption of such jumps—*similar to* "Dark matter"??

Closed form solutions for Debt Value D

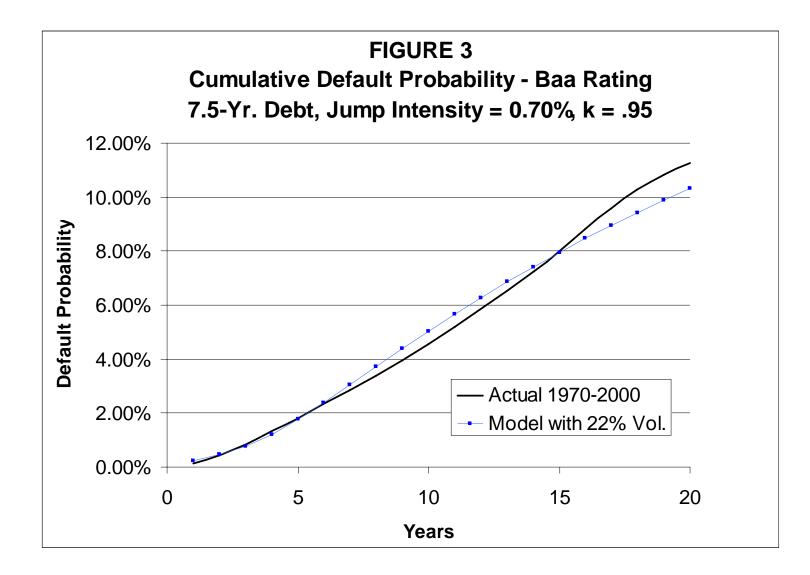
$$D = \frac{C + mP}{z_1} (1 - \left(\frac{V}{V_B}\right)^{-y(g,z_1)}) + (1 - \alpha)V_B \left(\frac{V}{V_B}\right)^{-y(g,z_1)} + \frac{\lambda(1 - k)V}{z_2} (1 - \left(\frac{V}{V_B}\right)^{-y(g,z_2)})$$
(2)

where $g = r - \delta + \lambda k$ $z_1 = r + m + \lambda$ $z_2 = z_1 - g$

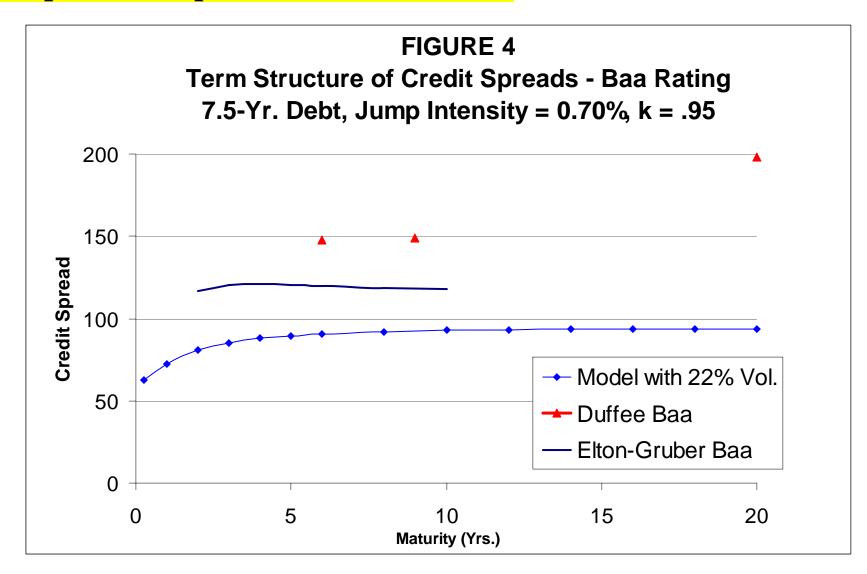
We also have closed-form solutions for V_B , E, and v.

Of course these formulas coincide with earlier formulas when $\lambda = 0$.

Predictions of Default at short horizons are now much better:



But predicted spreads are still too low:



LIQUIDITY

Longstaff, Mithal, Neis (2004):

Find spreads for CDS are consistently lower than observed credit spreads

• LMN attribute difference to non-default factors ("liquidity"), and find ----**The non-default component ranges from 50 to 72 bps per year,**

and "is nearly constant across rating categories."

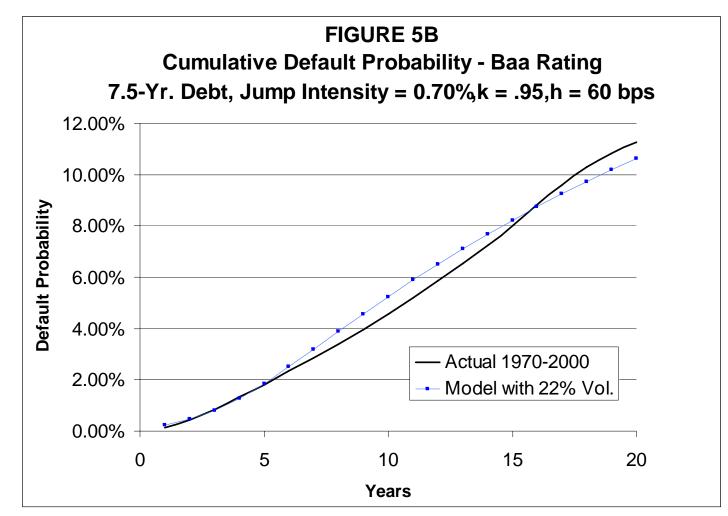
We introduce the *liquidity premium h* (= 60 bps) as an addition
 to the required return on debt. (see also Ericsson & Renault (2005))

>> That is, risk-neutral expected <u>debt</u> cash flows are discounted at r + h.

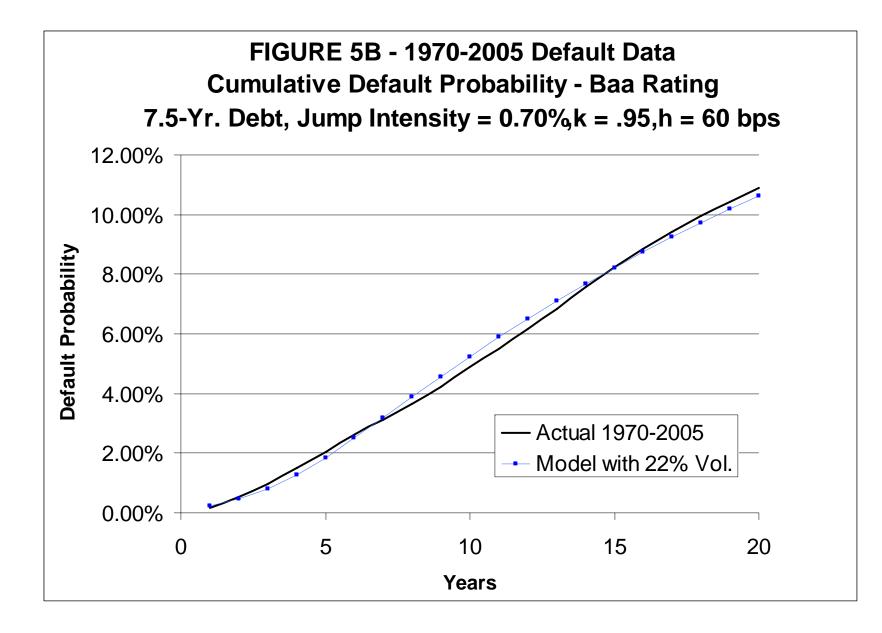
>> Equity cash flows continue to be discounted at *r*.

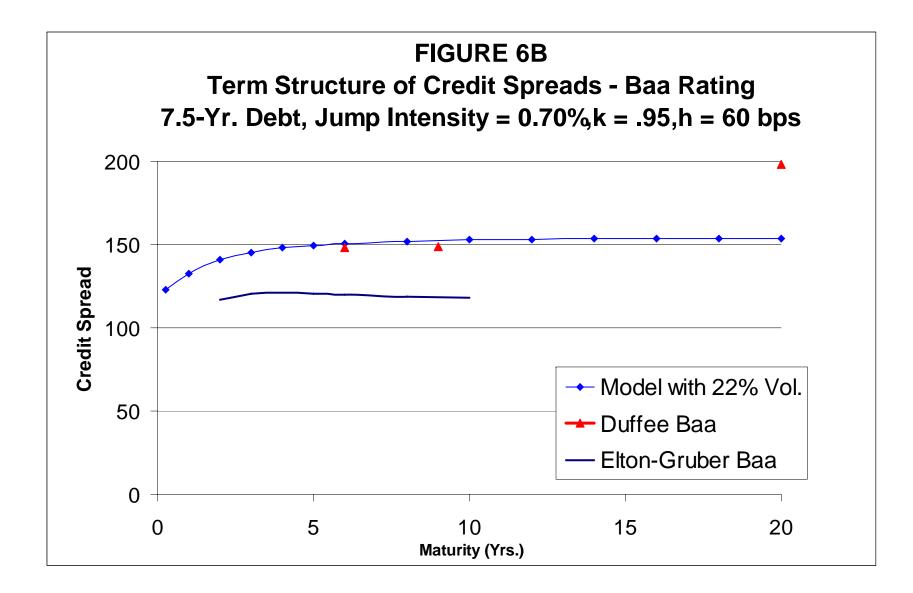
>> Not the same as just adding 60 bps to spread, since V_B will change.

Results with jumps, liquidity premium: Baa-rated debt

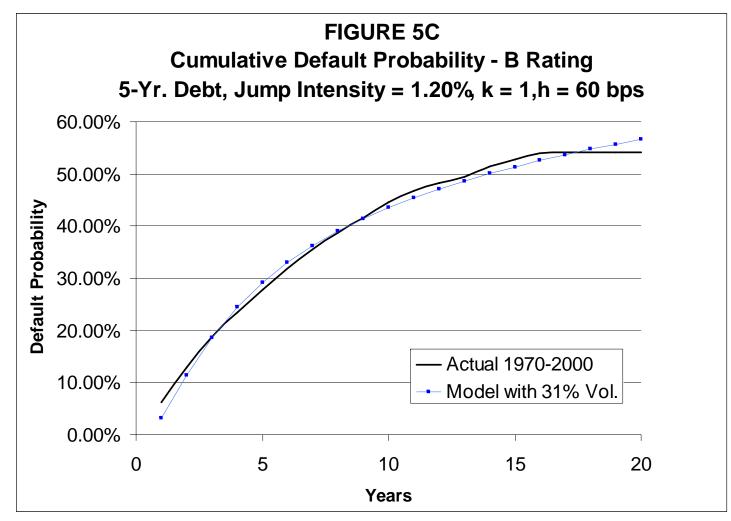


The model predicts a recovery rate of 49.5%, vs. the target of 50%.

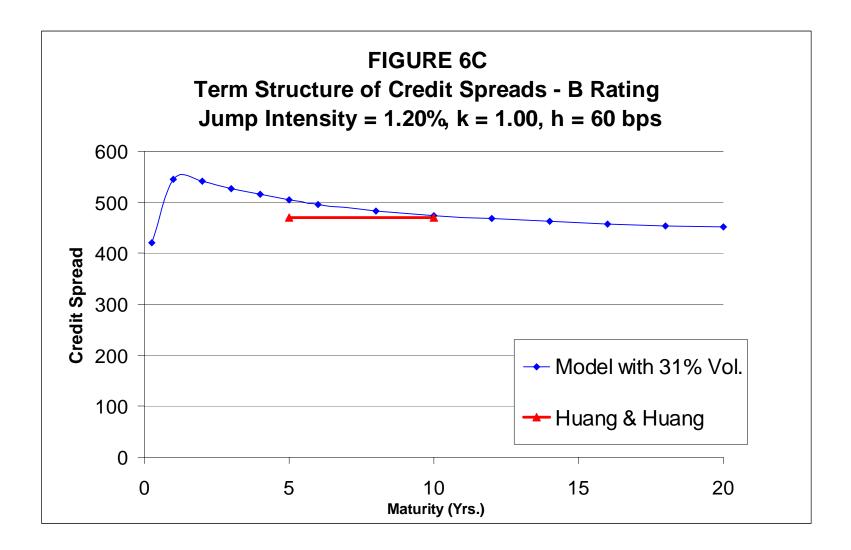




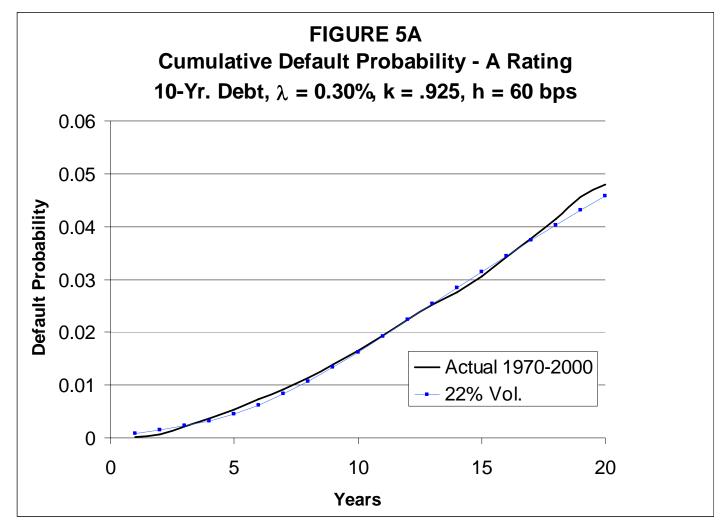
Results with jumps, liquidity premium: B-rated debt



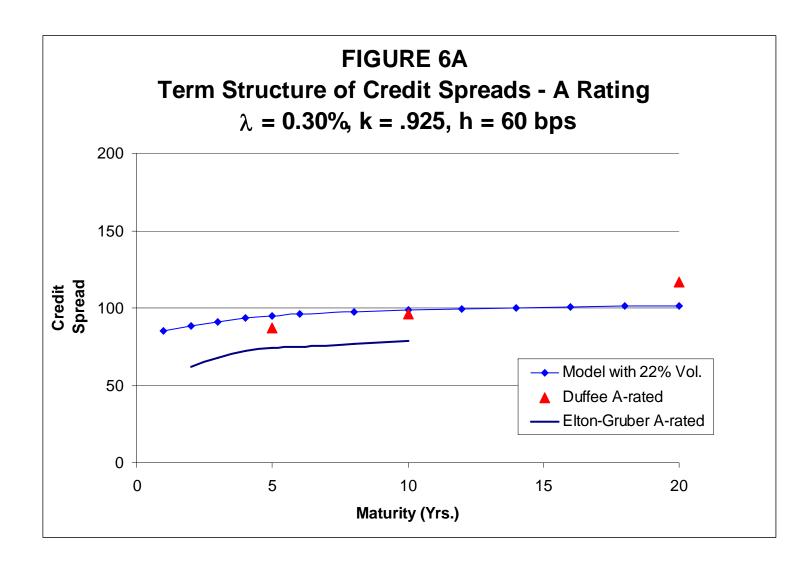
The model predicts a recovery rate of 40.5%, vs. the target of 40%.



Results with jumps, liquidity premium: A-rated debt



The model predicts a recovery rate of 59.5%, vs. the target of 60%.



APPLICATIONS TO CORPORATE DECISIONS:

Optimal Capital Structure

• We now *drop the assumption* that leverage for firms matches the previously-specified levels (e.g. 43.3% for Baa-rated firms)

---We consider leverage ratios that *maximize total firm value* for firms in each different rating category.

• **Baa-rated firms:** Optimal leverage = **46.7%**

---This is not far from the actual *Baa average leverage* of **43.3%**

---If h = 0, optimal leverage is 49.9%.

A-rated firms: Optimal leverage = 45.2% (vs. actual 32.0%)
 >> A-rated firms appear to be somewhat *under-leveraged* >> But the value loss is small (< 0.3% of firm value v)

- B-rated firms: Optimal leverage = 36.7%!! (vs. actual 65.7%)
 —Less leverage than Baa because volatility higher, maturity 5 yrs.
 —Spread at optimal leverage would be 240 bps, not 505 bps
 Tentative conclusion:
 - —Average B-rated firm in the data base is *over-leveraged*
 - ---Leverage stats for B-rated firm likely include *fallen angels*, whose initial leverage was lower

CONCLUSIONS

• Structural Models are alive and well!

---With the addition of a simple jump and liquidity cost, they can explain both observed <u>credit spreads</u> and <u>default probabilities</u>

---Closed form solutions allow easy comparative statics

- ---Valuations can be used to study optimal financial structure of firms, as well as other corporate decisions
- --Optimal leverage is close to actual leverage for Baa-rated firms >> A-rated firms appear to be under-leveraged relative to optimal >> B-rated firms appear to be considerably over-leveraged

APPENDIX

TARGETS: Following Huang & Huang (2004) and others; data 1985-1996

Credit Spreads	Targets	Sources Huang & Huang (HH, 2003), Duffee (1998), Elton & Gruber (EG, 2001)						
A Rated		5					(- , ,	
5 Yr.	90 bps	HH:	96	Duffee:	87	EG:	74	
10 Yr.	100 bps	HH:	123	Duffee:	96	EG:	79	
20 Yr.	115 bps	HH:	N/A	Duffee:	117	EG:	N/A	
Baa Rated	-							
5 Yr.	145 bps	HH:	158	Duffee:	149	EG:	121	
10 Yr.	150 bps	HH:	194	Duffee:	148	EG:	118	
20 Yr.	195 bps	HH:	N/A	Duffee:	198	EG:	N/A	
B Rated	-							
5 Yr.	470 bps	HH:	470	(Based on Caouette, Altman, Narayanan (1998))				
10 Yr.	470 bps	HH:	470	(Based on Caouette, Altman, Narayanan (1998))				
20 Yr.	N/A			-		-		
Riskfree Rate	8%	HH:	8%	(Average over period 1985-1995)				

TABLE 1: TARGET SPREADS, DEFAULT DATA

Default Probabilities

Data: Moody's Special Comment 2001

A Rated		Baa Rated		B Rated	
1 Yr.	0.01%	1 Yr.	0.14%	1 Yr.	6.16%
5 Yr.	0.54%	5 Yr.	1.82%	5 Yr.	27.90%
10 Yr.	1.65%	10 Yr.	4.56%	10 Yr.	44.60%
20 Yr.	4.79%	20 Yr.	11.27%	20 Yr.	54.20%

Is there a jump risk premium?

---i.e., is there a difference between the risk neutral jump intensity λ , and the "real" (under the physical measure) intensity γ of a jump?

---Yes, if jump risk is imperfectly diversifiable.

- ---Measure by ratio $H = \gamma / \lambda$: smaller ratio \rightarrow larger jump risk premium.
- --Given λ , the risk premium doesn't affect *pricing* (spreads), but it must be known to determine the *probability of default* γ .
- CGH (2003) show that *jump risk will command a risk premium* if:
 - ---Multiple firms can default simultaneously, or
 - --Default of one firm can increase default intensities of others.
 - ---We assume a jump risk premium, but don't know to need to know cause

Our approach: (alternative jump risk premia approaches are possible!)

• A jump to default is at least "as bad as" a diffusion to default, in that it should command at least as high a risk premium.

- We assume the *jump risk premium* **H** is the same as the *default risk premium* **J** *for the pure diffusion part of the asset value process*
- Let η be the cumulative default probability of the pure diffusion process at debt maturity using the *risk neutral* drift g, and
 - ζ be the cumulative default probability of the pure diffusion process at debt maturity using the actual (physical) drift ($g + \pi$), where
 - π is the asset risk premium. Then the diffusion risk premium is

$$J = \zeta / \eta < 1.$$

• For *Baa* debt, $\lambda = 0.70\%$ and $\pi = 4\%$ / yr. (see Lec.1 Table 2). After 10 yrs.,

 $--\zeta = 1.84\%, \ \eta = 5.60\% \Rightarrow J = .329$

--- Assuming H = J: Predicted real jump intensity $\gamma = \lambda^* J$

→ Real jump intensity $\gamma = 0.7\%$ x .329 = 0.23%

• For *B*-rated debt, $\lambda = 1.2\%$. At 5 yr. debt maturity, J = 25.6%/35.1% = .729Real jump intensity $\gamma = 0.88\%$

---If the jump risk premium is larger, default probabilities will be *lower*.