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ABSTRACT5

Are temperature proxy records linear recorders of past temperature conditions? We apply a6

statistical test for linearity to 15 millennial-long proxy records with annual resolution that7

where shown to significantly respond to Northern Hemisphere annual mean temperature8

selected from a collection of 30 proxies. The test, based on generalized additive modeling,9

shows that most of the proxies can indeed be shown to be linear functions of annual mean10

temperature, but two proxy records do not appear to have a linear relationship with tem-11

perature – this supports the assumption of linearity in most climate reconstruction work.12

The method tests for non-linearity in a proxy relative to the group of proxies it is being used13

together with. We test robustness of the results and find that the results are stable to choice14

of proxies. The linearity-testing method is quite general and could in the future be used for15

larger and more extensive sets of proxies.16
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1. Introduction17

Considering the fact that a systematic network of instrumental temperature measure-18

ments around the globe started as late as in the second half of the 19th century we are19

dependent on other types of information to understand temperature variability prior to that.20

Such information is essential in order to evaluate whether the recent global warming falls out-21

side the range of the natural variability of the last one or two millennia in either magnitude22

or rate (NRC (2006); Jansen et al. (2007)), as well as providing material that may be used to23

evaluate paleo-climate model output and the paleo-model forcings. Our knowledge of past24

temperature variability must be drawn from temperature-sensitive proxy data. Such data25

can be extracted from both historical records and from various natural recorders of climate26

variability such as corals, fossil pollen, ice-cores, lake and marine sediments, speleothems, and27

tree-ring width and density. A review of different types of temperature proxy data is given28

in, for example, Bradley (1999) and Jones et al. (2009), and the availability of millennia-long29

temperature proxy records in the Northern Hemisphere is synthesized in Ljungqvist et al.30

(2012).31

Multi-proxy temperature reconstructions are based on training a model on data-sets that32

include both observations and proxy data. Then, using the trained model on proxies alone a33

model-based value for the observational quantity is extracted. Most current reconstruction34

methods used are linear – a linear proportionality between a signal in the proxy and in the35

real world is assumed. But do we know a priori whether the relationship actually is linear?36

We expect that linear methods will produce better reconstructions if the proxies are linear37

temperature recorders. While knowledge of the biological and geological systems that lay38

down the proxy records helps to understand which systems are linear (Frank et al. 2010) it39

is of interest to have quantitative tests for linearity.40

There has been an increasing awareness that climate proxy records do not always show a41

linear relationship to temperature (Tingley et al. 2012). This has been most evident in the42

field of dendroclimatology where the so-called divergence problem, the fact that some high-43

2



latitude tree-ring records show a lessened or even negative response to higher temperatures44

in the late 20th century, has been studied by numerous researchers (Andreu-Hayles et al.45

(2011); Briffa et al. (1998); Briffa et al. (1998); D’Arrigo et al. (2008); Loehle (2009); Wilson46

et al. (2007) and the references there-in). The non-linear properties of some tree-ring width47

records have in pioneering studies been assessed by, for example, Carrer and Urbinati (2001),48

Fritts (1976), Graumlich and Brubaker (1986), and D’Arrigo et al. (2004). The non-linear49

response of some temperature sensitive proxy records to temperature has also been brought50

to attention regarding low-resolution proxy archives such as chironomid, diatom and pollen.51

Non-parametric methods have been applied for reconstructing temperature from such proxies52

by, among others, Birks (1995), and Birks et al. (2010) and Bayesian reconstruction tech-53

niques that feature non-linear modeling have been used by Haslett et al. (2006), Korhola54

(2002), Toivonen et al. (2001), and Vasko et al. (2000).55

We present here methods and tests that can reveal non-linear relationship between prox-56

ies and temperature, so-called non-parametric methods. These methods are well-known in57

statistics, see e.g. chapter 10 in Teräsvirta et al. (2010), but only occasionally utilized in58

paleoclimatic research. By using a non-parametric method the aim is to avoid assumptions59

on the parametric form of the relationship in question. We let the data ’speak for themselves’60

and it enables us to find a function that describes the available data well. This is in contrast61

to parametric modelling, where a specific model with parameters is assumed to generate the62

data in question. One such method in climate reconstruction is the simple ”direct regres-63

sion” method (pioneered by Groveman and Landsberg (1979)). In such a parametric model,64

it can be easy to do inference and great gains in efficiency are possible, however, only if the65

model is (almost) true. If the assumed model is incorrect, inferences can be useless, leading66

to misleading interpretations of the data. Non-parametric models provide a simple way to67

find structures in data sets without imposing a parametric model, and it is also possible to68

test whether relationships are linear.69

In this paper we will examine two such models; a non-parametric additive model and a70
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semi-parametric additive model which allows for some linear and some non-linear regressors.71

For a purely illustrative purpose we will compare these two methods with reconstructions72

using the simple ”direct regression” model. The rest of the paper is organized as follows.73

In section 2 we give a brief overview of the non-parametric models, and the corresponding74

estimation methodology. In section 3 we present the proxy data and temperature series used,75

while section 4 reports the results of the fitted models and tests of linearity. Finally, section76

5 concludes. In the Appendix we demonstrate the additive non-parametric method in a test77

example, to show that it works on realistic data with known properties.78

2. Methods79

a. Linear regression model80

In the multivariate regression – used for instance already in Groveman and Landsberg81

(1979) – a NH mean temperature Y is expressed as a linear sum over d selected proxies X,82

Y = α +
d∑

j=1

βj ×Xj + ǫ. (1)

”Training”, to determine the coefficients (α, βj), is performed during an interval where83

both Y and the X’s are available, and the determined coefficients are then used to build a84

model for use at all other times. Assuming data stationarity is central to this step. This85

method is still in some use although several alternatives exist – see Christiansen et al. (2009)86

for a current review. We stress that it is used here for illustrative purposes only.87

b. Non-parametric regression models88

The aim of non-parametric models is to relax assumptions on the form of a regression89

function, and to let the data search for a suitable function that describes the available data90

well. These approaches are powerful in exploring fine structural relationships and provide91
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very useful diagnostic tools for parametric models.92

In a multivariate regression problem we want to study the relationship between the

response variable Y and the vector of co-variates X = (X1, ..., Xd)
T via

m(x) = E(Y |X = x).

It is useful to model the unknown regression function m(x) additively, that is,

m(x) =

d∑

j=1

mj(xj). (2)

Usually an intercept term is added, i.e. E(Y ) = α. This gives us the following additive

non-parametric model,

Y = α +
d∑

j=1

mj(Xj) + e, (3)

where m1, ..., md are unknown uni-variate functions, E(e) = 0, Var(e) = σ2 and e is inde-

pendent of the vector of co-variates X. To ensure identifiability, m1, ..., md are required to

satisfy

E[mj(Xj)] = 0, j = 1, ..., d, (4)

which implies that E(Y ) = α.93

Estimation of the unknown functions m1, ..., md is done by the back-fitting algorithm,94

introduced by Breiman and Friedman (1985) and Buja et al. (1989). Note first, that if the95

additive model, (3), is correct then96

E[Y − α−
∑

j 6=k

mj(Xj)|Xk] = mk(Xk), k = 1, ..., d. (5)

This relationship suggests an iterative procedure for the estimation of the unknown func-97

tions. Thus for a known constant α and given functions mj , j 6= k, the function mk can98

be estimated by a uni-variate regression fit based on the observations (X i
k, Yi), i = 1, ..., n,99

where X i
k is the ith observation of the kth additive variable. Denote the uni-variate smoother100

of mk by Sk. The algorithm works as follows:101

102
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Step 1. Initialization: α̂ = n−1
∑n

i=1
Yi, m̂k = m0

k for k = 1, ..., d.103

Step 2. Find new transformations: For k = 1, ..., d:

m̂k = Sk[Y − α̂−
∑

j 6=k

m̂j(Xj)|Xk];

centre the estimator to obtain m̂∗
k = m̂k − n−1

n∑

i=1

m̂k(X
i
k),

and α̂∗ = α̂ + n−1

n∑

i=1

m̂k(X
i
k).

Step 3. Repeat step 2 until convergence.104

105

The idea behind this algorithm is to carry out a fit, calculate partial residuals from that106

fit, and refit again. That is why the iteration scheme is called back-fitting. The starting107

functions m0

1
, ..., m0

d can be obtained in various ways, for example, from a linear regression108

fit of Y on the co-variates Xk. The smoothing operator Sk can be other non-parametric109

regression estimators such as kernel methods, see e.g. Fan and Gijbels (1996).110

This way of modelling non-linear relationships between a response and several predictors

has been extensively used within the statistical community for some years. In fact, the

additive model above, is a version of a wider model, called generalized additive model (GAM),

see Hastie and Tibshirani (1990). Here the conditional mean (m(X)) of a response Y is

related to an additive function of the predictors via a link function g:

g[m(X)] = α +m1(X1) + ... +mp(Xd). (6)

See also Hastie and Tibshirani (1990) and Hastie et al. (2009) for further technical details111

regarding the back-fitting algorithm and non-parametric regression models. An alternative112

to the back-fitting algorithm is the marginal integration method, see Tjøstheim and Auestad113

(1994).114

In the linear regression model each regressor represents one degree of freedom – in the115

additive model more degrees of freedom are used up, see Hastie and Tibshirani (1990) – it is116
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therefore generally advantageous to consider models that contain both linear and non-linear117

terms; these are called semi-parametric models. The methods are implemented in R – see118

www.r-project.org – and the software used in this paper is available upon request.119

3. Data120

A wide range of different kinds of proxies with annual resolution have been used in this121

study: one speleothem micro-layer thickness record, three ice-core δ18O records (one of which122

a composite of several others, see below), seven varved thickness sediment records, thriteen123

tree-ring width records, four tree-ring maximum latewood density records, one tree-ring124

height-increment record, and one tree-ring δ13C record. Information about each of these125

30 proxy records is given in Table 1, such as name of the proxy, latitude and longitude,126

type of proxy, season bias, dating uncertainty, and reference to the original publication. We127

only use proxies with annual resolution – this places the proxies on a comparable basis to128

the instrumental data they are calibrated against – but excludes most presently available129

millennia-long proxies.130

A general problem for any reconstruction is the risk of ’over-fitting’ – i.e. that we have131

so many proxies for which we have to find a coefficient or, in the case of GAM, an additive132

smoothed model-term, that we are using up all or almost all the degrees of freedom and133

therefore can, in the extreme case, explain all the variance in the calibration data set and134

at the same time have a limited or even reduced explanatory power in independent data.135

As we have restricted our proxies to those with annual resolution we have eliminated many136

other, long, series and thereby minimized the risk of over-fitting.137

We test the set of 30 proxies for relevance by screening them in terms of how well they138

correlate to both the Northern Hemispheric mean temperature and the local temperatures –139

See Table 1. As noted by Juckes et al. (2007), choosing proxies by screening their correlation140

to temperature is not an entirely unproblematic approach. Even when screening proxies to141
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temperature, there still exists a risk that poor proxies are included because of insufficient in-142

strumental temperature data for the screening process. The uncertainty estimation becomes143

more problematic if temperature measurements have been used already in the data selection.144

We found that 15 of the proxies are both significantly correlated (standard two-sided T-test,145

p=0.01) to global and local temperatures, and these form the set we use in the subsequent146

analysis. We use a two-sided test since, a priori, we do not know if the proxy responds147

with an increase or a decrease when the temperature rises. Most temperature proxy records148

have temporal and seasonal limitations (Bradley (1999); Bradley and Jones (1992); Jones149

et al. (2009)). The proxies have different optimal season response and few proxies are likely150

to fully reflect annual mean temperature (Ljungqvist 2010). The response to the proxys151

optimal season can be higher than the correlation to annual mean temperature used here.152

Most of the series we have here are continuous, but the series for Iceberg Lake and153

Jämtland have gaps, and the Greenland composite and Southern Sierra Nevada end before154

1990 – the missing values, in the standardized series, are replaced with 0’s. This is an155

unacceptable practice were the reconstructions to be used as such – but they are calculated156

and shown in this paper only to help illustrate the non-linearity testing method. To train157

the models we use the Northern Hemisphere annual mean temperature data from the 5◦×5◦158

gridded HadCRUT3v data set from Brohan et al. (2006).159

4. Results160

In this section we use the non-parametric additive method to reveal whether there exist161

non-linear relationships between 15 selected proxies and the mean Northern Hemisphere162

(NH) temperature. We also perform a multi-proxy temperature reconstruction based on a163

multiple linear regression, a non-parametric model and a semi-parametric model based on164

observed values of the proxies from AD 800. It is well known that low-frequency variability165

is underestimated by the multiple linear regression method (Christiansen et al. 2009) so we166
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stress that the reconstruction is performed to have a reference against which the non-linearity167

test can be viewed – the direct reconstruction is not presented here for other uses.168

To calibrate our models, we use annual observations of the NH mean temperature data169

from the 5◦×5◦ gridded HadCRUT3v data set (Brohan et al. 2006) and the proxies from 1850170

through 1969, i.e. 120 observations, which is the calibration period. The NH temperature is171

centred over the calibration period. The proxies are centred and normalized with mean and172

standard deviation from the calibration period. This choice of calibration period ensures173

that there is no missing data in any of the proxies used, i.e. there is no use of zero-padding174

in the calibration of the models.175

We first fit the classical multiple linear regression model to our data, also known as the176

direct global method, i.e. a regression with the NH temperature as the response and selected177

proxies as predictors. The results are given in Table 2. Here the estimated coefficients and178

corresponding p-value for the significance test is reported.179

Next, we fit a non-parametric model, i.e. the model from equation (3), to the proxies180

selected above. We use the software program R, and the function gam() from the package181

gam, with default settings. That is, we use the identity link function and smoothing splines182

with 4 degrees of freedom, see e.g. Green and Silverman (1994), as the smoothing operator.183

An approximate F test is used to evaluate the significance of the non-linearity, to determine184

whether including the non-linear component of each smooth term in the model resulted185

in a significantly better fit than a linear relationship. Although the test statistics do not186

have exact or even asymptotic F distributions, Hastie and Tibshirani (1990) report that187

simulations show them to be useful approximations. The test results for non-linear effects188

are shown in Table 2, and shows two significantly non-linear proxies: the tree-ring width189

records Indigirka and Yamal. Figure 1 shows the fitted functions m̂k for each proxy, and190

some of them seem to have a non-linear relationship with the temperature, however, only191

two of them are found significantly non-linear. The dashed curves in each plot are the upper192

and lower point-wise twice-standard-error curves. The vertical marks along the bottom of193
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each graph illustrates the distribution of the values of the proxies. Further details regarding194

the non-linear effects test are found in Hastie and Tibshirani (1990).195

We compare these two models, that is, the linear model and the non-parametric model,

by a comparison test– see Table 3. The model comparison test is an approximate F-test,

where the test statistic is

F =
(RSS1 − RSS2)/RSS2

(DF1 −DF2)/DF2

,

where RSSi is the residual sum of square for model i and DFi is the approximate degrees196

of freedom for model i, see Hastie and Tibshirani (1990) for further details. We see that the197

reduction in RSS (Residuals Sum of Squares) for the non-parametric model compared with198

the linear model is not significant.199

Since we have found that two of the 15 proxies relates non-linearly to temperature, we fit200

a semi-parametric model, i.e. the other 13 proxies are modelled linearly. We thus also reduce201

problems with over-fitting. The result for the semi-parametric model are seen in Table 2, i.e.202

the same non-linear effects test as above, are here performed for the two proxies. Again, the203

tests indicate that Indigirka and Yamal relates non-linear to temperature. Figure 2 shows204

the estimated linear and non-parametric curves.205

We then compare the explanatory power of the linear and the semi-parametric model in206

a comparison test as above (Table 3). We find that the reduction in residual sum of squares207

is significant, indicating a better fit for the semi-parametric model over the linear model.208

Finally we calculate the in-sample correlation (i.e. during the training interval) of the209

three methods and the NH temperature – see Table 4. These non-parametric methods give210

better in-sample fit than the linear method.211

a. Robustness test212

The results regarding proxy non-linearity are interpretable in a relative sense – i.e. the213

non-linearity is present in a proxy with respect to the other proxies, and a natural question214
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is whether the list of non-linear proxies detected will be different if a different set of proxies215

is used. We test this in a very simple way, by removing one proxy at the time and re-216

calculating, noting which proxies test positive for non-linearity, then replacing the omitted217

proxy and going on to the next one. Thus, 15 tests are performed. Table 5 shows the218

results. Evidently there are two proxies that overwhelmingly test positive for non-linearity219

– Indigirka and Yamal, while a handful of others now and then also pass the test, depending220

on which proxy is omitted in the leave-one-out analysis. This gives a robust indication that221

the two proxies are special with respect to the other proxies as a group.222

b. Reconstruction uncertainties223

The reconstructions presented here are for comparative purposes only, but it is of interest224

to see how specific they are given the proxies used and whether they are individually different225

once a picture of their uncertainties are at hand. To obtain this information we perform226

bootstrapping with replacement on the observations. This is a well-known procedure which227

is occasionally coming into use in climate reconstruction circles (Till and Guiot 1990), and228

(Guiot 2005). We performed 1000 re-samples, performed the training and reconstruction229

each time, and compiled the reconstructions. In the end we had 1000 values for each year230

of the reconstruction period and found the lower 2.5% and the upper 97.5% percentile, and231

plot these, along with the reconstructions, in Figure 3.232

The reconstructions are from 800–1990, in order to minimize problems with missing proxy233

data. However, for these reconstructions, zero-padding in the standardized proxy series are234

applied for missing observations in the Greenland composite (1974–1990), the Southern235

Sierra Nevada (1989–1990), Jämtland (888–908) and the Columbia Ice Field (800–949). As236

already mentioned, such a replacment of missing data may affect the reconstructions. In237

order to estimate such an effect, we have excluded the Columbia Ice Field tree-ring record238

in a separate analysis, as this is the proxy with the most missing data. That is, first, we239

have used the other 14 proxies and the mean NH temperature to calibrate three models; a240
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complete linear, a non-parametric and a semi-parametric model with Indigirka and Yamal as241

non-linear. Second, reconstructions are performed with these three models. A comparison242

between these reconstructions (with 14 proxies) and the reconstructions in Figure 3 (with243

15 proxies), indicates that the zero-padding has almost no effect on the linear and semi-244

parametric reconstructions, and just a small effect on the non-parametric reconstruction.245

That leads us to believe that even though zero-padding has been applied, the reconstructions246

in this case seem relatively robust.247

We note that the intervals of uncertainty in Figure 3 are quite wide – so wide that here is248

hardly any difference between the reconstructions – but particularly wide in the case of the249

fully non-linear method. This is consistent with the possibility of over-fitting in the training250

interval. Note the much larger uncertainty, relatively, for the period near 1000 AD in the251

non-linear method.252

5. Summary and Discussion253

We have introduced testing for non-linearity in proxy-based temperature reconstructions,254

and a non-linear reconstruction method. An alternative to the approximate test for non-255

linear effects we have used here, is the generalized likelihood ratio (GLR) test developed by256

Fan and Jiang (2005). By using such a test it is possible to test a parametric null hypothesis,257

e.g. that the mean NH temperature is a linear model of the available proxies, against an258

alternative, not a linear model. We note that even though the asymptotic null distribution259

of the GLR statistic is available, in finite samples one would resort to conditional bootstrap260

methods to obtain the null distributions. We therefore defer application of this test for future261

research.262

We show that these non-parametric methods do give better in-sample fit and further, we263

should expect that temperature reconstructions utilizing such methods also could be more264

correct. Of course, we should have in mind problems with over-fitting when using non-linear265
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models.266

Furthermore, auto-correlation in the residuals can cause problems during reconstructions,267

such as biased level or biased uncertainty estimates. This problem may still be present, and268

in future research we aim to control for this fact by introducing auto-regressive error terms.269

Also, using a better selection procedure for relevant proxies for the non-parametric additive270

regression model would be of interest, but we note that inference in additive models is not271

well developed, see e.g. Fan and Jiang (2005).272

Our analysis shows that relative to the present group of proxies two are non-linear relative273

to the NH mean temperature. The series are the tree-ring width records Indigirka and Yamal.274

One possible physical explanation for the non-linear behaviour of the Yamal tree-ring width275

record (Briffa (2000); Briffa et al. (2008)) may be the observed change in growth form of the276

trees in this region during the latter part of the 20th century caused by the warmer and thus277

more favourable growth conditions (Devi et al. 2008). Concerning the Indigirka tree-ring278

width record (Moberg et al. 2006) only the last 600 years of the record have actually been279

published in a specific article that critically evaluates the record (under the name Yakutia)280

(Hughes et al. 1999). It is interesting to note, however, that the correlation between the two281

records only amounts to 0.77 over the period AD 1400–1993 that they both have in common.282

That only two out of 15 proxies tested positive for non-linearity is support for the general283

assumption that temperature proxies can be used in linear reconstruction attempts. Loehle284

(2009) discusses how non-linearity can come about in the context of trees’ response functions;285

it is evident how the response can be not only non-linear but monotonic, but also bi-valued286

although then with oppositely-signed response rates. Our own result for Yamal seems to287

be of the former kind (Devi et al. 2008), while the result for Indigirka hints at the latter288

(or an even more complex case). We note that data non-linearities do not just arise due to289

direct causes affecting trees and their environment but can also be due to mundane things290

like data-collection issues (Esper et al. 2012). None of the non-linearities we have detected291

were found in other forms of temperature proxies.292
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To validate the models we would like to introduce cross-validation on data not used to293

train the model – a common and important procedure in the reconstruction field, but difficult294

to carry out due to the scarcity of independent data. ’Cross-validation’ a.k.a. ’leave one out’295

validation is a possibility but is complicated by the presence of auto-correlation in the data.296

Finally, testing reconstruction methods on ensembles (Christiansen et al. 2009) of pseudo-297

data allows one to find not only the scatter of the reconstructions but also the bias. The use298

of the Bootstrap routine is, however, a very economic way of extracting information on the299

scatter of a reconstruction, from limited data. Further research should also include comparing300

non-parametric reconstruction methods with the more commonly used reconstruction meth-301

ods, such as the iterative regularized expectation maximization (RegEM) method (Dempster302

et al. (1977); Schneider (2001); Mann and Rutherford (2002); Smerdon and Kaplan (2007)),303

and also to examine their performance in an ensemble study as in (Christiansen et al. 2009).304
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Büntgen, U., D. C. Frank, D. Nievergelt, and J. Esper, 2006: Summer temperature variations352

in the European Alps, A.D. 755–2004. J. Climate, 19, 5606.353
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APPENDIX507

In this appendix we document the application of the additive non-parametric model

to an artificial case, i.e. we specify a non-linear model for some of the proxies and then

check whether the method detects this model. For simplicity, we assume an additive model

consisting of just three standardized proxies,

Y =
3∑

j=1

mj(Xj) + e, (A1)

where the three proxies X1, X2 and X3 are Southern Colorado Plateau (as its coefficient508

is found significant in the linear model), Indigirka and Yamal (as these are found signifi-509

cantly non-linear), respectively. We further assume that the regression function for South-510

ern Colorado Plateau is linear (i.e. m1 = 0.06 · X1), the regression function for Indigirka511

is non-linear (m2 = 0.1 · cos2(X2)) and the regression function for Yamal also non-linear512

(m3 = 0.02 ·X2

3
− 0.02 ·X3

3
). The functions are chosen to resemble the calibrated functions513

from the semiparametric model.514
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By using the calibration data from 1850–1969 for these proxies, we generate the artificial515

’temperature’ Y from the model above. In addition, we add noise (e), which is iid from a516

normal distribution with zero mean and standard deviation equal to 0.15, to the artificial517

’temperature’. We then fit a non-parametric model to this data. The result from the518

estimation is shown in Table 6 and Figure 4. The test correctly detects m2 and m3 to be519

non-linear, and rejects m1 as non-linear. In the figure the estimated functions are plotted as520

thin solid curves, and the true underlying functions are plotted as thick solid curves. Clearly,521

the method is capable of detecting the true underlying functions, but not perfectly, mainly522

due to the added noise. In the bottom right plot, the points are the artificial ’temperature’523

Y with noise. Clearly, they deviate quite a bit from the the solid curve, which is the artificial524

’temperature’ Y without noise. The dashed curve is the reconstruction obtained from the525

calibrated non-parametric model. The reconstruction is quite close to the true curve, and526

we conclude that the method works.527
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Table 1. Proxies. R1–R5 are Pearson correlation coefficients. R1 and R2 are the correlations to NH mean T – with and without

linear trends, for AD 1850–1969. R3 and R4 are the same, but correlated against the local grid-point T and for the years 1870–1969.

R5 is by the original author, when available. A (’–’) indicates that no information is available. ∆ is dating uncertainty in years. Note

for Polar Urals: The R5 is from the Briffa et al. (1995) version of Polar Urals for the May–Sep season AD 1882–1980. Note for Southern

Colorado Plateau: The authors stated that R5 was calculated from the ”mean max annual T”. This is difficult to find – instead we used

the mean of the monthly-mean Jun–Aug T, although these are based on daily-mean values, not daily max values. 4 of the high-latitude

series are evaluated, (R3 and R4) against averages of grid-point T covering an area: Renland –30◦W–20◦W/65◦N–75◦N; Avam-Taimyr

–92◦E–102◦E/69◦N–73◦N; Greenland composite –55◦W–33W/60◦N–75◦N; Gulf of Alaska –153◦W–131◦W/55◦N–62◦N.

Proxy record Season Long Lat Extent R1 R2 R3 R4 R5 ∆ Proxy type Reference

Agassiz Ice Cap Annual -73.10 80.70 800–1972 0.37 0.25 0.13 -0.01 - ±0 Ice-core δ
18

O Vinther et al. (2008)
Avam-Taimyr July 93.00 70.00 800–2003 0.49 0.30 0.29 0.25 0.39 ±0 Tree-ring width Briffa et al. (2008)
Big Round Lake July to September -68.50 69.83 971–2003 0.41 0.21 0.03 -0.06 0.46 ±1 − 20 Varved lake sediment Thomas and Briner (2009)
Blue Lake June to August -150.46 68.08 800–2005 -0.02 -0.15 -0.02 0.01 0.56 ±12 Varved lake sediment Bird et al. (2009)
Boreal/Upper Wright June to August -118.46 36.54 800–1992 0.36 0.08 0.06 0.06 - ±0 Tree-ring width Lloyd and Graumlich (1997)
Central Europe June to August 8.00 46.30 800–2003 0.12 0.08 0.53 0.54 0.72 ±0 Tree-ring width Büntgen et al. (2011)
Columbia Ice Field May to August -117.15 52.15 950–1998 0.18 0.03 0.40 0.38 0.73 ±0 Tree-ring density Luckman and Wilson (2005)
Donard Lake June to August -61.35 66.66 800–1992 -0.09 -0.01 -0.11 -0.08 0.57 ±1 − 20 Varved lake sediment Moore et al. (2001)
Eastern Carpathians July to August 25.10 47.10 994–2005 0.05 0.11 0.34 0.33 0.42 ±0 Tree-ring width Popa and Kern (2009)
Finnish Lapland June to August 25.00 69.00 800–2005 0.35 0.25 0.54 0.50 0.64 ±0 Tree-ring width Helama et al. (2010)
French Alps June to August 7.00 45.50 800–2008 0.31 0.18 0.59 0.59 0.39 ±0 Tree-ring width Corona et al. (2011)

Greenland composite Annual -40.00 70.00 800–1973 0.23 0.13 0.31 0.21 0.56 ±0 Stacked ice-core δ
18

O Vinther et al. (2010)
Gulf of Alaska January to September -145.00 60.00 800–1999 0.22 0.00 0.36 0.32 0.48 ±0 Tree-ring width D’Arrigo et al. (2006)
Iceberg Lake May and June -142.95 60.78 800–1998 0.17 0.11 -0.13 -0.16 0.23 ±32 Varved lake sediment Loso (2009)
Indigirka June to August 148.15 70.53 800–1993 0.32 0.23 0.31 0.28 - ±0 Tree-ring width Moberg et al. (2006)
Jämtland June to August 13.30 63.10 800–2002 0.37 0.16 0.48 0.50 0.63 ±0 Tree-ring width Linderholm and Gunnarson (2005)

Karakorum Mountains June and July 74.99 36.37 828–1998 0.29 0.08 0.12 0.29 0.48 ±0 δ
13

C tree-ring Treydte et al. (2009)
Laanila June to August 27.30 68.50 800–2007 0.09 0.17 0.53 0.56 0.56 ±0 Tree-ring height-increment Lindholm et al. (2011)
Lake C2 June to August -77.54 82.47 800–1987 0.14 0.04 0.09 0.06 - ±57 Varved lake sediment Lamoureux and Bradley (1996)
Lower Murray Lake July -69.32 81.21 800–1969 0.27 0.23 0.11 0.10 0.78 ±16 Varved lake sediment Cook et al. (2009)
Polar Urals May to September 65.75 66.83 800–1990 0.52 0.38 0.40 0.30 - ±0 Tree-ring density Esper et al. (2002)

Renland Annual -26.70 71.30 800–1986 0.09 -0.04 0.39 0.27 - ±2 − 20 Ice-core δ
18

O Vinther et al. (2008)
ShiHua Cave May to August 116.23 39.54 800–1985 0.43 0.12 0.06 0.05 0.65 ±5 Speleothem layer thickness Tan et al. (2003)
Sol Dav April to October 98.93 48.30 800–1999 0.39 -0.28 -0.06 0.02 0.58 ±0 Tree-ring width D’Arrigo et al. (2001)
Southern Sierra Nevada June to August -118.90 36.90 800–1988 0.20 0.20 0.21 0.21 - ±0 Tree-ring width Graumlich (1993)
Southern Colorado Plateau June to August -111.40 35.20 800–1996 0.43 0.27 0.23 0.19 0.68 ±0 Tree-ring width Salzer and Kipfmueller (2005)
Teletskoe Lake Annual 87.61 51.76 800–2002 0.44 0.06 0.31 0.17 - ±1 Varved lake sediment Kalugin et al. (2009)
The Alps June to September 8.00 46.30 800–2004 0.24 0.14 0.81 0.80 0.69 ±0 Tree-ring density Büntgen et al. (2006)
Torneträsk April to August 19.80 68.31 800–2004 0.38 0.33 0.81 0.79 0.79 ±0 Tree-ring density Grudd (2008)
Yamal June to July 69.17 66.92 800–1996 0.29 0.03 0.61 0.59 0.56 ±0 Tree-ring width Briffa (2000)
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Table 2. Calibration results. The first two columns give the estimated coefficients and corresponding p-value of a standard
significance test for the linear model. The third column gives the p-value for the non-linearity test of the proxies in the non-
parametric model. The fourth column gives the p-value for the non-linearity test of the proxies in the semi-parametric model.
∗ ∗ ∗, ∗∗ and ∗ indicate significance on the 1%, 5% and 10% level, respectively.

Proxy Linear model Non-parametric model Semi-parametric model
Coefficients p-value Non-linear p-value Non-linear p-value

Avam-Taimyr 0.035 0.026∗∗ 0.543 -
Columbia Ice Field -0.002 0.873 0.466 -
Finnish Lapland 0.037 0.014∗∗ 0.473 -
French Alps 0.021 0.131 0.121 -
Greenland composite 0.002 0.878 0.237 -
Gulf of Alaska 0.021 0.133 0.560 -
Indigirka 0.019 0.127 0.084∗ 0.027∗∗

Jämtland 0.013 0.935 0.647 -
Polar Urals 0.060 0.005∗∗∗ 0.243 -
Southern Sierra Nevada 0.042 0.002∗∗∗ 0.591 -
Southern Colorado Plateau 0.057 0∗∗∗ 0.489 -
Teletskoe Lake 0.002 0.914 0.193 -
The Alps 0.012 0.375 0.610 -
Torneträsk 0.006 0.701 0.358 -
Yamal -0.033 0.081∗ 0.079∗ 0.043∗∗
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Table 3. Model comparison tests. The first column reports the degrees of freedom, second
column reports the Residual Sum of Squares and the last column reports the results from
the two tests. ∗ ∗ ∗ denote significance on the 1% level.

Model Df. RSS F-statistic p-value
Linear 104 1.634 - -
Non-parametric 59 0.881 1.120 0.339
Linear 104 1.634 - -
Semi-parametric 98 1.380 3.012 0.009∗∗∗
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Table 4. In-sample correlation between the reconstructions and measured NH temperature
(1850–1969)

Model Correlation with NH temperature
Linear model 0.80

Semi-parametric model 0.86
Non-parametric model 0.92
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Proxy Significantly non-linear

French Alps 2
Greenland composite 1
Indigirka 13
Polar Urals 2
Telteskoe Lake 2
Yamal 10
Others 0

Table 5. Results of testing the robustness of the non-linearity test, based on ’leave-one-out’
sampling. As there are 15 proxies we can choose 15 different sets of 14 proxies each and
test for non-linearity and see whether a particular proxy tests positive for non-linearity. We
count the number of times a proxy is found significantly non-linear (at 10 % level) in the 15
possible calibrated non-parametric models. For instance Yamal was found to be non-linear
10 out of 15 times while Teletskoe Lake was only found non-linear twice out of the 15 tests.
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Table 6. Results from the approximate non-linear test for the fitted non-parametric model
for the artificial case.

Proxy Non-linear p-value

Southern Colorado Plateau 0.599
Indigirka 0.001∗∗∗

Yamal 0.051∗∗
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List of Figures563

1 The estimated functions (i.e. m̂) for each proxy for the non-parametric model.564

The dashed lines in the plots are twice the pointwise standard error bounds.565

The vertical marks along the bottom illustrate the distribution of the proxies. 34566

2 The estimated functions (i.e. m̂) for each proxy for the semi-parametric model.567

The dashed lines in the plots are twice the pointwise standard error bounds.568

The vertical marks along the bottom illustrate the distribution of the proxies. 35569

3 The reconstructed rolling 10-year mean NH temperatures from the linear570

method (top plot), the non-linear method (middle plot) and the semi-parametric571

method (bottom plot). The gray curves are the the 2.5% lower and upper572

97.5% percentiles, see text for details on the bootstrapping performed to gen-573

erate these. 36574

4 Top left plot to bottom left plot: The estimated functions (dashed curves) for575

the fitted non-parametric model and the true functions (solid curves) for the576

artificial case. The bottom right plot: points are the artificial ’temperature’577

Y with noise, the solid curve is the artficial ’temperature’ Y without noise,578

and the dashed curve is the reconstruction obtained from the non-parametric579

model. 37580
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Fig. 1. The estimated functions (i.e. m̂) for each proxy for the non-parametric model. The
dashed lines in the plots are twice the pointwise standard error bounds. The vertical marks
along the bottom illustrate the distribution of the proxies.
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Fig. 2. The estimated functions (i.e. m̂) for each proxy for the semi-parametric model. The
dashed lines in the plots are twice the pointwise standard error bounds. The vertical marks
along the bottom illustrate the distribution of the proxies.
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Fig. 3. The reconstructed rolling 10-year mean NH temperatures from the linear method
(top plot), the non-linear method (middle plot) and the semi-parametric method (bottom
plot). The gray curves are the the 2.5% lower and upper 97.5% percentiles, see text for
details on the bootstrapping performed to generate these.
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Fig. 4. Top left plot to bottom left plot: The estimated functions (dashed curves) for the
fitted non-parametric model and the true functions (solid curves) for the artificial case. The
bottom right plot: points are the artificial ’temperature’ Y with noise, the solid curve is the
artficial ’temperature’ Y without noise, and the dashed curve is the reconstruction obtained
from the non-parametric model.
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