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Abstract

In this paper we consider a firm that has to deal with technological change facing a declining profit

stream for its established product. The firm has the following options to choose from: it can either exit

the industry or invest in a new technology with which it can produce an innovative product. Furthermore,

it has the possibility to temporarily suspend operations before taking an irreversible decision. In case

the firm decides to launch the new product we analyze the firm’s optimal capacity choice opposite to a

scenario where the firm has infinity capacity at its disposal. We find that depending on this assumption

the investment threshold is monotonic or non-monotonic as a function of uncertainty. It is monotonic

under capacity choice and non-monotonic under full flexibility. Contrary to standard real options theory

we find that the effect of uncertainty on the exit threshold is non-monotonic when taking into account

the capacity choice decision. Furthermore, we conduct an analysis of the effect of capacity size of the

old market on the investment decision in a new product as well as the exit decision. We find that in

case the firm invests out of suspension the chosen capacity level stays constant for different sizes of the

old market’s production capacity. Regarding the firm’s suspension option, we conclude that the firm

suspends operation only when uncertainty is high and innovative product market is considered very

attractive.
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1 Introduction

The photography industry underwent a disruptive change in technology during the 1990s when the traditional

film was replaced by digital photography (see e.g. The Economist January 14th 2012). In particular Kodak

was largely affected : by 1976 Kodak accounted for 90% of film and 85% of camera sales in America. Hence

it was a near-monopoly in America. Kodak’s revenues were nearly 16 billion in 1996 but the prediction is

that it will decrease to 6.2 billion in 2011.

Kodak tried to get (squeeze) as much money out of the film business as possible and it prepared for the

switch to digital film. The result was that Kodak did eventually build a profitable business out of digital

cameras but it lasted only a few years before camera phones overtook it.

According to Mr Komori, the former CEO of Fujifilm of 2000-2003, Kodak aimed to be a digital company,

but that is a small business and not enough to support a big company. For Kodak it was like seeing a

tsunami coming and there is nothing you can do about it, according to Mr. Christensen in The Economist

(January 14th 2012).

This paper focuses on industries that have to deal with technological change. The above example showed

that this can be a burden. However there are enough industries where technological change brings fruitful

times in terms of profits. One example is the video game industry, where innovation plays a big role.

The publishers, Activision, saw their worldwide sales increase with $650m in the first five days, when the

new video game “Call of Duty: Black Ops” replaced its predecessor, Call of Duty: Modern Warfare 2, in

November 2010 (The Economist, December 10th 2011). Another example is the IPhone launched by Apple

that was described by Time Magazine as ”the invention of the year 2007“. In 2011 net income was $7.31bn

in the three months to 25 June, 125% higher than a year earlier and a record quarterly profit for the firm.

Revenue was $28.6bn, also a quarterly record.

We study the problem of a price setting firm that produces with a current technology for which it faces

a declining sales volume. The firm has three options: it can either exit this industry, invest in a new

technology with which it can produce an innovative product or suspend production for a certain amount

of time. The firm is a monopolist in a market characterized by uncertain demand. Demand is driven by a

demand intercept assumed to follow a geometric Brownian motion. We distinguish between two scenarios in

the sense that the resulting new market can be booming or ends up to be smaller than the old market used

to be. We assume that the technology necessary to bring this innovative product on the market is already

available to the company. This technology was either provided by other firms or was invented by the R&D

laboratory of the firm itself.

The question we study is when and if it is optimal to launch this product. In case the firm decides to

launch the new product we also analyze the optimal capacity choice with which the firm decides to enter
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the innovative product market. Since the new technology is already present, our model does not analyze

the innovation process concerning the invention of the technology. Besides, adopting the new technology the

firm has the option to exit the market at any point in time, i.e. the firm can decide to exit the market of

the old product because it considers the potential of the new product market not profitable enough to invest

and thus, decides to exit before launching the new product. The exit option is conserved beyond the time

of the potential investment in the new product. Thus, the firm can also exit the market of the new product

irrevocably at any time.

Before taking the irreversible decision to exit or invest, the firm furthermore has the possibility to tem-

porarily suspend production. This suspension option results in three possible scenarios regarding the market

of the current technology. The firm might never suspend production because it is optimal to exit the market

before already. In the second scenario operation might not be profitable anymore at all considering the

current product market and the firm has to decide whether to exit or invest in the innovative market out

of suspension mode. In the third scenario the firm once suspended, decides to exit the market if demand

continues to fall or resume production if demand increases again in the future.

We find that the firm uses the option to suspend operation only when uncertainty is high, and the

parameters that make the second market attractive are high. For the specific case that the firm invests out

of suspension we find that the chosen capacity level stays constant in different values of the current market

capacity size as well as in the scaling parameter of the demand intercept γ. The reason for this is that the

firm gives up the same revenue stream independent of γ when investing in the new product since it does

not produce before investment. In fact, we find that the firm invests such that also after the investment the

revenue stream is the same independent of γ. Therefore, the capacity choice for the new market is insensitive

to γ.

We introduce our model in Section 3 and derive the result that the optimal policy of the considered

stopping problem exits and is unique. In Section 4 we specify a model assuming that the firm has infinite

capacity available. This means we do not consider the capacity decision. In this case the firm is fully

flexible regarding production and can downscale, increase or suspend production at any point in time. We

use this model as a benchmark in the analysis of our main model presented in Section 3. Analyzing the

investment timing decision of the benchmark model we find that the effect of uncertainty on the investment

threshold is contrary to the standard real options result non-monotonic. The investment threshold increases

in uncertainty for low values while it decreases for high values of uncertainty due to the existence of the

exit option. A similar result was obtained by Kwon (2010) who analyzes a one-time opportunity to invest

in improving a current technology with declining profit stream. He finds that, if the technology boost is

sufficiently large, then the investment threshold decreases in demand uncertainty. However, we show that in

case the investment decision does not only involve timing but also the choice of the optimal capacity size,
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the investment threshold is again monotonically increasing in uncertainty. Regarding the exit decision, the

standard real options result says that the exit threshold is decreasing with uncertainty (Dixit (1989), Kwon

(2010)) since the value of waiting increases. We find that this result, however, does not hold anymore when

the investment decision involves timing and capacity choice. We show that for our framework the effect

of uncertainty on the exit threshold is non-monotonic where the increasing part is caused by the effect of

capacity choice.

This paper is organized as follows. We review related literature in Section 2. Our model is presented in

Section 3 followed by a simplified version that serves as benchmark in the analysis. The comparative statics

analysis of the optimal policies for both models is conducted in Section. Our main results are present in

Section 6 and we conclude in Section 7.

2 Related Literature

WORK IN PROGRESS

3 Model - Capacity, Timing

The firm currently produces an established product. The quantity, which has to be determined at each point

of time, is q1, the price is p1 and the inverse demand function is given by

p1 = µθ − q1,

in which the process θt follows the geometric Brownian motion

dθt = α1θtdt+ σθtdzt,

with constant drift α1 that is assumed to be negative and volatility σ.

We distinguish between two types of cost. On the one hand the firm faces a fixed cost F . On the other

hand it has to incur unit production costs being equal to c. Due to the latter feature it can be optimal to

temporarily suspend production, i.e. q1 = 0 for some time.

The firm has the option to start producing an innovative product which requires an investment in pro-

duction capacity. The capacity of the new product is denoted by K2. The investment cost is sunk and equal

to δK2. Denoting the price and the quantity of the new product by p2 and q2, respectively, at the moment

of the new product launch the firm’s demand function changes into:

p2 = γθ − q2. (1)

4



*Draft Paper: Please do not distribute without authors’ permission

The firm produces up to full capacity, i.e. q2 = K2, except in the cases that demand falls so low that the

price would turn negative. In that case the firm temporarily suspends production, i.e. q2 = 0.

Because this innovative market grows faster than the old one, we assume a different speed of development.

In particular the dynamics of θ now become

dθ = α2θdt+ σθdz. (2)

with α2 > α1. In fact, we can define the stochastic process θ(t) as follows

dθ(t) = α(t)θ(t)dt+ σθ(t)dz,

with

α(t) =

 α1 for t < τ∗,

α2 for t ≥ τ∗,

where this τ∗ will be specified later.

The cost structure for the new product also changes after the new product launch. Whereas the fixed

cost still equals F , there are no variable cost. We motivate this by observing that in the digital world the

unit cost of a product is most of the time very small or negligible.

In case the firm decides to invest in the new product, the firm chooses the optimal timing as well as the

optimal size of the capacity investment. It can be the case that the new market is not profitable enough

for an investment to be undertaken. Since the old market is decreasing over time it can be optimal for the

firm to exercise the option to exit the market. We also allow for the possibility to exit the market after the

investment in the innovative product has taken place.

Therefore, the optimal stopping problem can be stated as follows:

V(θ0) = sup
τ1

IE

[∫ τ1

0

e−rtΠ1(θ1(t))dt+ e−rτ1 max {0,

max
K2

(
sup

τ21{τ2>τ1}

IE

[∫ τ2

τ1

e−r(t−τ1)Π2(θ2(t− τ1),K2)dt

∣∣∣∣ θ2(0) = θ1(τ1)

]
− δK2

)}∣∣∣∣∣ θ1(0) = θ0

]
(3)

Here, τ1 denotes the first time at which the decision maker decides to invest in product 2 or to exit the

market. τ2 denotes the time that the firm would decide to exit the market of product 2, in case it has

invested in the first run.

To determine the value of investing in project 2, we first solve the subproblem that is stated at the right

hand side of the maximization in equation (3). Considering a specific current value for θ2(0) the net expected

discounted profit of investing in project 2 is given by:
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V2(θ2(0)) = sup
τ2

IEθ2(0)
[∫ τ2

τ1

e−r(t−τ1)Π2(θ2(t− τ1))dt

]
, (4)

= sup
τ2

IEθ2(0)
[∫ τ2−τ1

0

e−rtΠ2(θ2(t))dt

]
,

= sup
τ̃

IEθ2(0)

[∫ τ̃

0

e−rtΠ2(θ2(t))dt

]
,

where IEθ denotes the expectation with respect to the probability law Qθ of the process {θ(t); t > 0}

starting at θ(0) = θ ∈ Rn. The optimal stopping problem in (4) is a standard problem. The instantaneous

profits in region 2 are given by

Π2(θ) = p2q2 − F = (γθ −K2)K2 − F = γK2θ −K2
2 − F.

The firm produces as long as the price is positive (p2 > 0) but will suspend production in case the price

turns negative. Therefore the profit is given by

Π2(θ) =

 γK2θ −K2
2 − F for θ > K2

γ ,

−F for θ ≤ K2

γ .

We denote the suspension threshold in market 2 by K2

γ = θS2
.

Taking into account that there is an option to exit the market, standard calculations (see, e.g. Chapter 6

in Section 2 of Dixit and Pindyck (1994)) lead to the following expression for the optimal value function V2:

V2(θ,K2) =


γK2

r−α2
θ − K2

2+F
r +D1θ

β4 for θ > K2

γ ,

−Fr +D2θ
β3 +D3θ

β4 for θ ≤ K2

γ ,

where β3 (β4) is the positive (negative) root of the quadratic equation 1
2σ

2β(β − 1) + α2β − r = 0. Here we

assume that the firm will exit out of the suspension region. However, it is also possible that the firm will

exit before ever entering the suspension region (i.e. θS2 = K2

γ < θE2 with θE2 denoting the exit threshold).

In this case the value function is given by

V2(θ,K2) =
γK2

r − α2
θ − K2

2 + F

r
+G1θ

β4 .

In the following we have to distinguish those two cases. The exit threshold θE2 for the two cases as well as

the specific expressions of the constant parameters D1, D2, D3 and G1, can be easily derived using the fact

that the value function has to be continuous and smooth in the suspension threshold and applying value

matching and smooth pasting at the exit threshold. The derivations as well as the explicit expressions for

the parameter values are given in Appendix A.1. The exit thresholds for the two different cases are given by

θE2
=

(
β4α2 − r
β4(r − α2)

)−1
β3

F
1
β3

1

γ
K

1− 2
β3

2 , (5)
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for case θS2 > θE2 and

θE2
=
r − α2

rγ

β4
β4 − 1

(
K2 +

F

K2

)
, (6)

for case θS2
< θE2

.

Now we can write equation (3) as

V(θ0) = sup
τ1

E

[∫ τ1

0

e−rtΠ1(θ1(t))dt+ e−rτ1 max

{
0,max

K2

(V2(θ2(0) = θ1(τ1),K2)− δK2)

}∣∣∣∣ θ1(0) = θ0

]
.

Now we consider the situation before the investment. The firm has essentially three options. The first

is to invest in product 2 while in production. The second is to suspend production and in the meanwhile

invest in product 2. And the third is to exit the market. Let us first determine the current instantaneous

profits. The firm will suspend production when p1 − c = µθ −K1 − c < 0, i.e., when θ < θS1
= c+K1

µ . The

instantaneous profit equals:

Π1(θ) =

 µK1θ − (cK1 +K2
1 + F ) for θ > c+K1

µ ,

−F for θ ≤ c+K1

µ .

Denoting the exit threshold by θE1 we can consider the following two cases: If θE1 ≥ θS1 then the firm

will never suspend production because it already has exited. If θE1
< θS1

there exists a θ-interval, where

it is optimal for the firm to suspend production. In this region the firm has two options: either to resume

production if θ has increased sufficiently or to exit the market, which will happen when θ decreases even

more. In the following we will denote the invest threshold by θI . Figure 1 illustrates the different regions

for the three options.

The following proposition states that there always exists the optimal policy for the stopping problem and

specifies the optimal value function of the firm.

Figure 1: Different Cases

Proposition 1 The optimal policy for the stopping problem of equation (3) always exists. The optimal value
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function is uniquely given by

V(θ) =

 V1(θ) for θ ∈ D∗ = (θE1 , θI),

Ω(θ) otherwise,

where we distinguish three cases for the function V1(.). If θE1
≥ c+K1

µ , the value function V1(.) is uniquely

given by

V1(θ) =
µK1θ

r − α1
− cK1 +K2

1 + F

r
+A1θ

β1 +A2θ
β2 .

For case θE1 <
c+K1

µ the value function is equal to

V1(θ) =


µK1θ
r−α1

− cK1+K
2
1+F

r +B1θ
β1 +B2θ

β2 for θ ≥ c+K1

µ ,

−Fr +B3θ
β1 +B4θ

β2 for θ < c+K1

µ ,

if θI ≥ c+K1

µ and equal to

V1(θ) = −F
r

+ C1θ
β1 + C2θ

β2 ,

in case θI <
c+K1

µ .

The value of the firm in the stopping region is equal to Ω(θ) = max {0, V2(θ2(0) = θ,K2)}. The optimal

continuation region is D∗ = (θE1 , θI). It is optimal to exit the market when θ < θE1 and invest in the new

product when θ > θI . Otherwise, it is optimal to continue operations.

In case the firm decides to invest in the new product instead of exiting, it does choose the timing as

well as the size of this investment. Deriving this optimal investment decision we follow ?. First, we ig-

nore the timing decision for a moment and just take into account the derivation of the optimal capacity.

Second, we derive the optimal timing of the investment or exit decision, respectively, taking the optimal

capacity size for given demand intercept θ in account. It is important to note that we wish to compute

maxK2∈[0,γθI ] {V2(θI ,K2)− δK2}. So if this maximum is not on the boundary we can just compute the

zero of ∂(V2(θI ,K2)−δK2)
∂K2

and then check that ∂2(V2(θI ,K2)−δK2)
∂2K2

< 0. Otherwise the maximum will be at the

boundary.

Proposition 2 gives the optimal capacity decision as well as the equations that implicity give the exit as

well as the investment decision for the different cases. To compute the optimal K2 we write the expression

of the derivate, for the case that the maximum is not on the boundary. Note that we have to distinguish 6

cases.
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Proposition 2 The exit and investment thresholds for the six different cases, respectively, are given implic-

itly by the following equations.

For the purpose of readability let’s consider the following constants:

a1 =
µK1

r − α1
; a2 =

cK1 +K2
1 + F

r
; a3 =

γ

r − α2
; a4 =

r − α2

γr

β4
β4 − 1

a5 =
γβ4(r − β3α2)

(β3 − β4)r(r − α2)
; a6 = γβ4

(
β4α2 − r
β4(r − α2)

1

F

) β4
β3 F

r

β3
β3 − β4

For the first three cases it holds that θE2 ≤ θS2 . Therefore if K2 is not on the boundary, K2 is implicitly

given by the following equation:

a3θI −
2K2

r
+

(
a5(2− β4)K1−β4

2 + a6
(−β4)(β3 − 2)

β3
K
−β4

(
1− 2

β3

)
−1

2

)
θβ4

I = δ (7)

The threshold for those three cases, is implicitly given by the solution of three subsequent equations, respec-

tively.

1. Case 1: In case of θE1
> θS1

and θE2
≤ θS2

it holds that

(β1 − 1)
[
a1θ

1−β2

E1
+ (a3K2 − a1)θ1−β2

I

]
− β1

[
a2θ
−β2

E1
−
(
a2 −

K2
2 + F

r
− δK2

)
θ−β2

I

]
+

(β1 − β4)

[
a5K

2−β4

2 + a6K
−β4

(
1− 2

β3

)
2

]
θβ4−β2

I = 0 (8)

(β2 − 1)
[
a1θ

1−β1

E1
+ (a3K2 − a1)θ1−β1

I

]
− β2

[
a2θ
−β1

E1
−
(
a2 −

K2
2 + F

r
− δK2

)
θ−β1

I

]
+

(β2 − β4)

[
a5K

2−β4

2 + a6K
−β4

(
1− 2

β3

)
2

]
θβ4−β1

I = 0 (9)

2. Case 2: In case of θE1
< θS1

< θI and θE2
≤ θS2

it holds that

θE1
=

((
(β1 − 1)

[
a1

(
c+K1

µ

)1−β2

+ (a3K2 − a1)θ1−β2

I

]
−

β1

[
cK1 +K2

1

r

(
c+K1

µ

)−β2

−
(
a2 −

K2
2 + F

r
− δK2

)
θ−β2

I

]
+

(β1 − β4)

[
a5K

2−β4

2 + a6K
−β4

(
1− 2

β3

)
2

]
θβ4−β2

I

)
1

β1

r

F

)− 1
β2

; (10)

(β2 − 1)

[
a1

(
c+K1

µ

)1−β1

+ (a3K2 − a1)θ1−β1

I

]
−

β2

[
cK1 +K2

1

r

(
c+K1

µ

)−β1

−
(
a2 −

K2
2 + F

r
− δK2

)
θ−β1

I

]
+

(β2 − β4)

[
a5K

2−β4

2 + a6K
−β4

(
1− 2

β3

)
2

]
θβ4−β1

I − β2θ−β1

E1

F

r
= 0 (11)
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3. Case 3: In case of θE1 < θI < θS1 and θE2 ≤ θS2 it holds that

θE1 =
((

(β1 − 1)a3K2θ
1−β2

I − β1
(
K2

2

r
+ δK2

)
θ−β2

I +

(β1 − β4)

[
a5K

2−β4

2 + a6K
−β4

(
1− 2

β3

)
2

]
θβ4−β2

I

)
1

β1

r

F

)− 1
β2

; (12)

(β2 − 1)a3K2θ
1−β1

I − β2
(
K2

2

r
+ δK2

)
θ−β1

I +

(β2 − β4)

[
a5K

2−β4

2 + a6K
−β4

(
1− 2

β3

)
2

]
θβ4−β1

I − β2θ−β1

E1

F

r
= 0 (13)

Regarding the remaining three cases it holds that θE2
> θS2

and therefore if K2 is not on the boundary,

it is implicitly given by the solution of the following equation:

a3θI −
2K2

r
−

(
β4F +K2

2 (2− β4)

K2r(β4 − 1)

(
a4

(
K2 +

F

K2

))−β4
)
θβ4

I = δ (14)

The threshold for those three cases, is implicitly given by the solution of three subsequent equations,

respectively:

4. Case 4: In case of θE1 > θS1 and θE2 > θS2 it holds that

(β1 − 1)
[
a1θ

1−β2

E1
+ (a3K2 − a1)θ1−β2

I

]
− β1

[
a2θ
−β2

E1
−
(
a2 −

K2
2 + F

r
− δK2

)
θ−β2

I

]
−

(β1 − β4)

[
γK2

r − α2

1

β4

(
a4

(
K2 +

F

K2

))1−β4
]
θβ4−β2

I = 0 (15)

(β2 − 1)
[
a1θ

1−β1

E1
+ (a3K2 − a1)θ1−β1

I

]
− β2

[
a2θ
−β1

E1
−
(
a2 −

K2
2 + F

r
− δK2

)
θ−β1

I

]
−

(β2 − β4)

[
γK2

r − α2

1

β4

(
a4

(
K2 +

F

K2

))1−β4
]
θβ4−β1

I = 0 (16)
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5. Case 5: In case of θE1 < θS1 < θI and θE2 > θS2 it holds that

θE1
=

((
(β1 − 1)

[
a1

(
c+K1

µ

)1−β2

+ (a3K2 − a1)θ1−β2

I

]
−

β1

[
cK1 +K2

1

r

(
c+K1

µ

)−β2

−
(
a2 −

K2
2 + F

r
− δK2

)
θ−β2

I

]
−

(β1 − β4)

[
γK2

r − α2

1

β4

(
a4

(
K2 +

F

K2

))1−β4
]
θβ4−β2

I

)
1

β1

r

F

)− 1
β2

; (17)

(β2 − 1)

[
a1

(
c+K1

µ

)1−β1

+ (a3K2 − a1)θ1−β1

I

]
−

β2

[
cK1 +K2

1

r

(
c+K1

µ

)−β1

−
(
a2 −

K2
2 + F

r
− δK2

)
θ−β1

I

]
−

(β2 − β4)

[
γK2

r − α2

1

β4

((
K2 +

F

K2

)
r − α2

γr

β4
β4 − 1

)1−β4
]
θβ4−β1

I − β2θ−β1

E1

F

r
= 0 (18)

6. Case 6: In case of θE1 < θI < θS1 and θE2 > θS2 it holds that

θE1
=

((
(β1 − 1)a3K2θ

1−β2

I − β1
(
K2

2

r
+ δK2

)
θ−β2

I +

(β1 − β4)

[
γK2

r − α2

1

(−β4)

((
K2 +

F

K2

)
r − α2

γr

β4
β4 − 1

)1−β4
]
θβ4−β2

I

)
1

β1

r

F

)− 1
β2

; (19)

(β2 − 1)a3K2θ
1−β1

I − β2
(
K2

2

r
+ δK2

)
θ−β1

I −

(β2 − β4)

[
γK2

r − α2

1

β4

((
K2 +

F

K2

)
r − α2

γr

β4
β4 − 1

)1−β4
]
θβ4−β1

I − β2θ−β1

E1

F

r
= 0 (20)

4 Analysis of Benchmark Model

In this section we present a model that will serve as a benchmark for the analysis of the model introduced

in Section 3. We now assume that the firm has infinite capacity. Therefore, including a parameter K2 is

not necessary. In order to start producing an innovative product, the firm has to pay sunk cost I. All

other assumptions remain unchanged. Therefore the optimal stopping problem does not differ much from

the previous case:

V(θ0) = sup
τ1

IE

[∫ τ1

0

e−rtΠ1(θ1(t))dt+ e−rτ1 max {0,

sup
τ21{τ2>τ1}

IE

[∫ τ2

τ1

e−r(t−τ1)Π2(θ2(t− τ1))dt

∣∣∣∣ θ2(0) = θ1(τ1)

]
− I

}∣∣∣∣∣ θ1(0) = θ0

]
, (21)

Here, τ1 denotes the first time at which the decision maker decides to invest in product 2 or exit the market.

τ2 denotes the time that the firm would decide to exit the market of product 2, in case it has invested in the

first run.

11
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As before, V2 is given by:

V2(θ2(0)) = sup
τ̃

IEθ2(0)

[∫ τ̃

0

e−rtΠ2(θ2(t))dt

]
.

The instantaneous profits in region 2 are given by

Π2 = p2q2 − F = (γθ − q2)q2 − F.

In this model, we compute the optimal quantity to produce. That quantity equals q2 = γθ
2 , which results

in a profit of

Π2(θ) =
γ2θ2

4
− F.

Taking into account that there is an option to exit the market, standard calculations, given in Appendix

A.3, lead to the following expression for the optimal value function V2:

V2(θ) =
γ2θ2

4(r − 2α2 − σ2)
− F

r
+Aθβ4 .

where β4 is again the negative root of the quadratic equation 1
2σ

2β(β − 1) + α2β − r = 0. After similar

computations as in the previous model, we obtain the following expression for θE2 :

θE2
=

√
F

γ2r
4(r − 2α2 − σ2)

(
β4

β4 − 2

)
. (22)

Now we consider the situation before the investment. Let us first determine the current instantaneous

profits. Since there is no restriction in the production quantity, maximizing the profit function w.r.t to the

optimal output quantity, we derive that:

q1 =
µθ − c

2
.

From this expression we see that the firm will suspend production, provided that it has not exited already,

whenever θ is below c
µ . The instantaneous profit, therefore, equals:

Π1(θ) =


(
µθ−c

2

)2
− F for θ > c

µ ,

−F for θ ≤ c
µ .

Denoting the exit threshold by θE1
we can consider the following two cases: If θE1

≥ c
µ then the firm

will never suspend production because it already has exited. If θE1 <
c
µ there exists a θ-interval, where it

is optimal for the firm to suspend production. In this region the firm has two options: either to resume

production if θ has increased sufficiently or to exit the market, which will happen when θ decreases even

more. θS = c
µ denotes the suspension threshold. The following proposition states that there always exists

the optimal policy for the stopping problem and specifies the optimal value function of the firm.

12
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Proposition 3 The optimal policy for the stopping problem of equation (21) always exists. The optimal

value function is uniquely given by

V(θ) =

 V1(θ) for θ ∈ D∗ = (θE1 , θI),

Ω(θ) otherwise,

where we distinguish two cases for the function V1(.). If θE1 ≥ c
µ then the function is equal to

V1(θ) =
µ2θ2

4(r − 2α1 − σ2)
− cµθ

2(r − α1)
+
c2

4r
− K

r
+A1θ

β1 +A2θ
β2 ,

while for case θE1
< c

µ the function is equal to

V1(θ) =


µ2θ2

4(r−2α1−σ2) −
cµθ

2(r−α1)
+ c2

4r −
K
r +B1θ

β1 +B2θ
β2 for θ ≥ c

µ ,

−Kr +B3θ
β1 +B4θ

β2 for θ < c
µ ,

if θI >
c
µ and equal to

V1(θ) = −K
r

+ C1θ
β1 + C2θ

β2 ,

if θI <
c
µ . The value of the firm in the stopping region is equal to Ω(θ) = max (0, V2(θ2(0) = θ)).

The optimal continuation region is D∗ = (θE1
, θI). It is optimal to exit the market when θ < θE1

and invest

in the new product when θ > θI . Otherwise, it is optimal to continue operations.

In order to derive the two thresholds θI and θE1 we apply the value matching and smooth pasting

conditions which leads to the following systems of equations, stated in Proposition 4, that implicitly define

the thresholds for the different cases.

Proposition 4 Considering the following constants,

b1 =
µ2

4(r − 2α1 − σ2)
; b2 =

cµ

2(r − α1)
; b3 =

c2

4r
− F

r
; b4 =

γ2

4(r − 2α2 − σ2)
; b5 =

F

r
,

the investment and exit threshold for the three cases, respectively, are implicitly given by the following equa-

tions.

If θE1 >
c
µ the thresholds θI and θE1 are implicitly given by

(β2 − 2)
[
b1θ

2−β1

E1
− (b1 − b4)θ2−β1

I

]
− b2 (β2 − 1)

[
θ1−β1

E1
− θ1−β1

I

]
+ b3β2

[
θ−β1

E1
− θ−β1

I

]
− β2(b5 + I)θ−β1

I +Aθβ4−β1

I (β2 − β4) = 0, (23)

(β1 − 2)
[
b1θ

2−β2

E1
− (b1 − b4)θ2−β2

I

]
− b2 (β1 − 1)

[
θ1−β2

E1
− θ1−β2

I

]
+ b3β1

[
θ−β2

E1
− θ−β2

I

]
− β1(b5 + I)θ−β2

I +Aθβ4−β2

I (β1 − β4) = 0. (24)

13
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For the case that θE1 <
c
µ < θI it holds that the thresholds are defined by the following equations system.

θE1
=

(
1

b5β2

(
(β2 − 2)

[
b1

(
c

µ

)2−β1

− (b1 − b4)θ2−β1

I

]
−

b2 (β2 − 1)

[(
c

µ

)1−β1

− θ1−β1

I

]
+ (b3 + b5)β2

[(
c

µ

)−β1

− θ−β1

I

]
−

β2Iθ
−β1

I +Aθβ4−β1

I (β2 − β4)
))− 1

β1
, (25)

(β1 − 2)

[
b1

(
c

µ

)2−β2

− (b1 − b4)θ2−β2

I

]
− b2 (β1 − 1)

[(
c

µ

)1−β2

− θ1−β2

I

]
+

(b3 + b5)β1

[(
c

µ

)−β2

− θ−β2

I

]
−

β1Iθ
−β2

I +Aθβ4−β2

I (β1 − β4)− b5β1θ−β2

E1
= 0. (26)

And for the case that θE1 < θI <
c
µ the following equations implicitly define the thresholds.

θE1
=

(
1

b5β2

(
b4 (β2 − 2) θ2−β1

I − Iβ2θ−β1

I +A (β2 − β4) θβ4−β1

I

))− 1
β1

, (27)

b4 (β1 − 2) θ2−β2

I − Iβ1θ−β2

I +A (β1 − β4) θβ4−β2

I − b5β1θ−β2

E1
= 0. (28)

5 Comparative Statics

In this section we conduct a comparative statics analysis of the value functions V, V2 in market 1 and 2,

respectively as well as the exit threshold θE2
.

We first establish the convexity of V2 which leads to the comparative statics with respect to σ.

Proposition 5 The optimal return function V2 is convex for both cases.

The proof is stated in Appendix B. Next, we examine the comparative statics of V2(.) with respect to α2,

σ and θ2(0).

Proposition 6 The optimal return function V2 is non-decreasing in α2, in σ and θ2(0) for both cases. If

θ2(0) > θE2
then V2 is strictly increasing in α2.

These results lead us to the comparative statics regarding the exit threshold with respect to α2 and σ,

stated in the following proposition.

Proposition 7 The exit threshold θE2
is non-increasing in α2, in σ and θ2(0) for both cases. If θ2(0) > θE2

then θE2
is strictly decreasing in α2.

Based on the expressions for θE2
, in equations (5) and (6) for the first model and (22) for the benchmark

model, we can further infer that:

14
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Remark 1 The exit threshold θE2 is inversely proportional to γ in both cases.

Remark 2 In the first model, for the case θS < θE2
(i.e. exit out of production), for K2 arbitrarily small

or large, θE2 is arbitrarily large. For the other case, if β3 > 2, θE2 is increasing with K2, otherwise θE2

decreases with K2.

Now for an analysis of the value function of market 1, V(.):

Proposition 8 The optimal return function V is convex for both cases.

Proposition 9 For all θ ∈ <+, the value function of the firm V is nondecreasing in α1, α2 and σ.

—¿WRITE SOMETHING HERE¡—

Proposition 10 The probability that the firm is investing rather than exiting, i.e. the probability that

threshold θI is hit before θE1 , is given by

PI =

(
θ(0)
θE1

)1− 2α1
σ2 − 1(

θI
θE1

)1− 2α1
σ2 − 1

. (29)

Proposition 11 Let TE2
= inf{t : θ2(t) = θE2

|θ2(0) = θI} be the time that the firm exits the second market

once it has invested. Then its expected value is given by

E [TE2 ] =


ln

[
θI
θE2

]
1
2σ

2−α2
if α2 <

1
2σ

2,

∞ otherwise.

(30)

Proposition 12 Let T denote the time until the company decides, optimally, to invest in a new technology

or to exit the market (which one occurs first). Then

E[T ] =
1

1
2σ

2 − α1

ln

[
θ(0)

θE1

]
−

1−
(
θ(0)
θE1

)1−2α1
σ2

1−
(
θI
θE1

)1−2α1
σ2

ln

[
θI
θE1

] .

6 Results

6.1 Effect of increasing uncertainty on threshold

The standard real options result says that the investment threshold goes up with increased uncertainty

reflecting the value of waiting. Tables 2 and 1 show for the considered investment decision, a different

result that holds. The investment threshold first goes up with uncertainty but decreases for high values of

uncertainty. The latter is caused by the existence of the exit option. The value of this option increases

15
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Table 1: Benchmark Model. Parameter Values: α1 = −0.02, α2 = −0.01, r = 0.1, c = 1, µ = 0.2, γ = 1.2,

F = 2, I = 100. Thus θS = c
µ = 5.

σ 0.1 0.15 0.2 0.25 0.3 0.325

θI 6.74 7.09 7.42 7.62 7.29 6.27

θE1
5.12 4.03 2.94 1.95 1.07 0.64

θE2
1.94 1.68 1.41 1.11 0.75 0.5

Case 1 2 2 2 2 2

P [invest]θS x 21.56% 35.24% 44.18% 55.21% 71.97%

E[TE2 ]θ(0)=θI 83.03 67.76 55.35 46.70 41.35 40.2615

Table 2: Benchmark Model. Parameter Values: α1 = −0.02, α2 = 0.01, r = 0.1, c = 1, µ = 0.2, γ = 1.2,

F = 2, I = 100. Thus θS = c
µ = 5.

σ 0.1 0.125 0.15 0.175 0.2 0.25

θI 5.38 5.43 5.45 5.41 5.26 4.21

θE1
4.09 3.60 3.10 2.58 2.08 1.07

θE2 1.67 1.53 1.38 1.22 1.05 0.64

Case: 2 2 2 2 2 3

P [invest]θS 58.90% 66.88% 73.10% 79.71% 88.57% x

E[TE2
]θ(0)=θI ∞ ∞ 1098.83 280.36 161.134 88.647

16
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with uncertainty and when investing the firm gains this option to exit. As a result the value of investment

increases with uncertainty and therefore the firm wants to invest sooner. A similar results was obtained by

Kwon (2010). However, he used a Brownian motion with drift to model the uncertainty in the profit stream.

As a result it is not clear what the relation is between the investment timing with the threshold. Modeling

the uncertainty with a geometric Brownian motion allows us to give insight about the effect of uncertainty

on the threshold as well as the timing given that the firm invests. See the expression for the expected time

in Proposition 12. Table

However, when the investment decision not only involves timing but also capacity size has to be determined

the investment threshold is again monotonically increasing in uncertainty. When uncertainty is high the firm

invests in a larger capacity. This implies that the exit threshold for the second product is higher and thus

the second product will be produced during a shorter time. This reduces the value of the investment so that

the firm has less incentive to invest and it invest later.

6.2 Effect of increasing uncertainty on exit thresholds

From standard real options literature it is known that the exit threshold is decreasing with uncertainty (see

e.g. Dixit (1989) and Kwon (2010)). The intuition is that the value of the option to resume production

or investment in the innovative product is higher when uncertainty is larger and therefore, the firm wants

to keep these options alive. However, Tables 3 and 4 show that in our framework the effect of uncertainty

on the exit threshold is non-monotonic. The increasing part is caused by the effect of the capacity choice.

Due to the inflexible production structure the firm is forced to produce up to capacity all the time. When

uncertainty goes up the capacity size K∗2 and thus production is larger. This leads to considerable losses

when θ is low. This induces the firm to exit before the θ is too low. The decreasing part is due to the reason

already given, i.e. the value of keeping the options to resume production and/or investing in the innovative

product alive increases with uncertainty.

6.3 Effect of old market production capacity

The decision of the firm to invest in the new market depends strongly on the capacity size in the old market.

Work in Progress

6.4 When does suspension not occur?

When the value of the option to start again production is low, the firm will not use the suspension option

but instead exit operations. This happens in cases that uncertainty is low and the drift is sufficiently low.

In addition in case of considering suspension versus exit in the first market suspension does not occur when

17
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Table 3: Parameter Values: α1 = −0.02, α2 = −0.01, r = 0.1, c = 1, µ = 1, γ = 1.2,K1 = 2, δ = 10, F = 2,

i.e. θS1
= c+K1

µ = 3, θ(0) =
θI+θE1

2 .

σ 0.05 0.1 0.15 0.2 0.25 0.3

K2 1.452 1.568 1.808 2.595 6.123 14.694

θI 3.546 3.668 3.954 5.071 9.676 18.76

θE1
3.401 3.168 2.891 2.546 2.105 1.628

θE2
2.195 1.989 1.832 1.860 1.941 1.630

Case 4 4 5 2 2 2

E[T ] 0.173 0.533 1.078 2.883 8.370 13.304

PI 41.73% 42.74% 43.14% 41.71% 39.34% 39.67%

E[TE2
] 3.711 9.770 14.735 22.967 36.978 44.44

Table 4: Parameter Values: α1 = −0.02, α2 = 0.01, r = 0.1, c = 1, µ = 1, γ = 1.2,K1 = 2, δ = 10, F = 2, i.e.

θS1 = 3, θ(0) =
θI+θE1

2 .

σ 0.05 0.1 0.15 0.2 0.25

K2 1.439 1.515 1.661 1.966 3.549

θI 2.907 2.985 3.115 3.416 5.073

θE1
2.829 2.686 2.460 2.183 1.855

θE2 1.971 1.772 1.602 1.480 1.352

Case 6 6 5 2 2

E[T ] 0.074 0.277 0.616 1.238 3.856

PI 44.62% 44.75% 44.80% 44.49% 42.43%

E[TE2
] ∞ ∞ 188.85 44.77 47.34
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Table 5: Parameter Values: α1 = −0.02, α2 = −0.01, r = 0.1, c = 1, µ = 1, γ = 1.2, σ = 0.1, δ = 10, F = 2,

θ(0) =
θI+θE1

2 .

K1 0.5 1 1.5 2 2.5 3

K2 1.571 1.631 1.632 1.568 1.514 1.513

θI 3.673 3.779 3.781 3.668 3.573 3.571

θE1 3.125 3.041 3.071 3.168 3.229 3.229

θE2
1.989 1.998 1.998 1.989 1.982 1.982

Case 4 4 4 4 5 6

E[T ] 0.646 1.160 1.064 0.533 0.255 0.252

PI 42.02% 39.36% 39.80% 42.74% 44.96% 44.99%

E[TE2 ] 10.77 14.48 13.87 9.77 6.75 6.71

Table 6: Parameter Values: α1 = −0.02, α2 = 0.01, r = 0.1, c = 1, µ = 1, γ = 1.2, σ = 0.1, δ = 10, F = 2,

θ(0) =
θI+θE1

2 .

K1 0.5 1 1.5 2 2.5 3

K2 1.550 1.565 1.543 1.515 1.515 1.515

θI 3.037 3.059 3.027 2.985 2.985 2.985

θE1
2.633 2.618 2.656 2.686 2.686 2.686

θE2
1.775 1.777 1.774 1.772 1772 1.772

Case 4 4 4 6 6 6

E[T ] 0.506 0.600 0.425 0.277 0.277 0.277

PI 42.93% 42.30% 43.51% 44.75% 44.75% 44.75%

E[TE2 ] ∞ ∞ ∞ ∞ ∞ ∞
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Table 7: Parameter Values: α1 = α2 = −0.02, r = 0.1, c = 0, µ = γ = 1, σ = 0.1, δ = 10, F = 2,

θ(0) =
θI+θE1

2 .

K1 0.5 1 1.5 2 2.5 3

K2 1.745 2.530 3.402 4.246 5.069 5.895

θI 5.131 6.957 8.977 10.924 12.812 14.701

θE1 3.589 2.604 2.461 2.606 2.867 3.186

θE2 2.511 2.885 3.466 4.078 4.647 5.195

Case 4 4 4 1 1 1

E[T ] 3.052 18.524 28.369 32.98 35.13 36.22

PI 33.10% 14.69% 10.36% 9.08% 8.53% 8.29%

E[TE2 ] 14.30 39.31 51.76 57.33 59.88 61.17

the option to invest in the new product is not attractive, i.e. γ is low and α2 as well as σ are also low.

6.5 Constant capacity when investing out of suspension

Tables 8, 9 and 10 show that the capacity level is insensitive to γ when the firm invests out of the suspension

region, i.e. Cases 3 and 6. This can be explained as follows. Investing out of the suspension region implies

that the firm does not produce before investment. Therefore, the firm gives up the same current revenue

when investing in the innovative product. Next, we want to argue that the firm invests such that also after

the investment the revenues are the same. We do this by showing that the firm chooses the investment

threshold such that the price as well as the price dynamics stay the same. From the table it can be obtained

that the value of γθI stays constant in γ. The latter characteristic implies that the output price at the

moment of investment for the innovative product is the same in all situations. To consider the dynamics, we

derive

dp = α2γθdt+ σγθdz (31)

from Equations 1 and 2. Hence the conclusion is that also the price dynamics stay the same for different γ.

We conclude that in all situations the investment of δK2 generates the same revenue stream in all situation.

This explains why the chosen capacity level K2 is also the same. The same reasoning explains why the

capacity stays constant when changing K1 while investing out of suspension, see Table 6 for K1 = 2, 2.5, 3.
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Table 8: Model from proposition 1: α1 = −0.02, α2 = −0.01, r = 0.1, c = 1, µ = 1, σ = 0.1,K1 = 2, δ =

10, F = 2, i.e. θS1
= 3, θ(0) =

θI+θE1

2 .

γ 1 1.5 2 3 5 10

K2 2.152 1.513 1.513 1.513 1.513 1.513

θI 5.661 2.857 2.142 1.428 0.857 0.428

θE1
3.460 2.583 1.938 1.292 0.775 0.388

θE2
2.586 1.583 1.189 0.793 0.476 0.238

Case 4 6 6 6 6 6

E[T ] 5.578 0.253 0.249 0.249 0.252 0.240

PI 27.77% 44.98% 45.02% 45.02% 44.99% 45.12%

E[TE2
] 32.82 6.72 6.67 6.67 6.70 6.54

Table 9: Model from proposition 1: α1 = −0.02, α2 = 0.01, r = 0.1, c = 1, µ = 1, σ = 0.1,K1 = 2, δ =

10, F = 2, i.e. θS1 = 3, θ(0) =
θI+θE1

2 .

γ 1 1.5 2 3 5 10

K2 1.571 1.515 1.515 1.515 1.515 1.515

θI 3.682 2.388 1.791 1.194 0.716 0.358

θE1
3.161 2.149 1.612 1.075 0.645 0.322

θE2 2.133 1.418 1.063 0.709 0.425 0.213

Case 4 6 6 6 6 6

E[T ] 0.577 0.277 0.276 0.274 0.272 0.280

PI 42.45% 44.75% 44.76% 44.78% 44.80% 44.73%

E[TE2
] ∞ ∞ ∞ ∞ ∞ ∞
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Table 10: Model from proposition 1: α1 = −0.02, α2 = 0.01, r = 0.1, c = 1, µ = 1, σ = 0.2,K1 = 2, δ =

10, F = 2, i.e. θS1
= 3, θ(0) =

θI+θE1

2 .

γ 1 1.5 2 3 5 10

K2 2.682 1.920 1.920 1.920 1.920 1.920

θI 5.240 2.683 2.013 1.342 0.805 0.403

θE1
2.539 1.748 1.311 0.874 0.525 0.262

θE2
1.890 1.179 0.884 0.589 0.354 0.177

Case 2 3 3 3 3 3

E[T ] 3.178 1.134 1.136 1.136 1.129 1.146

PI 41.32% 44.72% 44.72% 44.72% 44.74% 44.70%

E[TE2
] 72.46 42.85 42.88 42.88 42.74 43.06

Table 11: Parameter Values: α1 = α2 = −0.02, r = 0.1, c = 1, µ = 1, γ = 1.2, σ = 0.1, δ = 10, F = 2,

θ(0) =
θI+θE1

2 .

K1 0.5 1 1.5 2 2.5 3

K2 1.583 1.684 1.729 1.642 1.539 1.512

θI 3.968 4.160 4.244 4.079 3.886 3.835

θE1
3.343 3.198 3.205 3.333 3.459 3.478

θE2 2.061 2.079 2.089 2.071 2.055 2.052

Case 4 4 4 4 5 6

E[T ] 0.726 1.686 1.915 1.005 0.337 0.238

PI 41.54% 37.25% 36.44% 40.09% 44.22% 45.14%

E[TE2
] 6.86 10.52 11.23 8.08 4.66 3.91
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7 Conclusions

WORK IN PROGRESS

A Additional Model Details

A.1 Market 2

In order to derive the constant parameters (D1, D2, D3 and G1) of the value function and the exit thresholds

for the two cases, we study the decision to exit the market. Denoting the exit threshold by θE2, we can write

down the following value matching and smooth pasting conditions for the case θE2 < θS :

V2,2(θ)|θ=θE2
= 0, (32)

∂V2,2(θ2)

∂θ

∣∣∣∣
θ=θE2

= 0, (33)

V2,1 (θ)|
θ=

K2
γ

= V2,2 (θ)|
θ=

K2
γ
, (34)

∂V2,1 (θ)

∂θ

∣∣∣∣
θ=

K2
γ

=
∂V2,2 (θ)

∂θ

∣∣∣∣
θ=

K2
γ

, (35)

where

V2(θ,K2) =


γK2

r−α2
θ − K2

2+F
r +D1θ

β4 for θ > K2

γ =: V2,1(θ),

−Fr +D2θ
β3 +D3θ

β4 for θ ≤ K2

γ =: V2,2(θ)).
(36)

Equations (77) and (78) account for the fact that the value function has to be smooth in θ = K2

γ . Solving

equations (75) to (78) one can easily derive the exit threshold θE2
and the expressions for the parameters

D1, D2 and D3:

θE2 =

(
β4α2 − r
β4(r − α2)

)−1
β3

F
1
β3

1

γ
K

1− 2
β3

2 ,

D1 =
r − β3α2

r(r − α2)(β3 − β4)
γβ4K2−β4

2 +D3,

D2 =
r − β4α2

r(r − α2)(β3 − β4)
γβ3K2−β3

2 ,

D3 = θ−β4

E2

β3
β3 − β4

F

r
.

For the second case, i.e. θE2
> θS , the value matching and smooth pasting conditions are given by

V2(θ)|θ=θE2
= 0, (37)

∂V2 (θ)

∂θ

∣∣∣∣
θ=θE2

= 0. (38)
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Solving this equation system one obtains

θE2 =
r − α2

rγ

β4
β4 − 1

(
K2 +

F

K2

)
,

G1 = − γK2

r − α2

1

β4

(
r − α2

rγ

β4
β4 − 1

(
K2 +

F

K2

))1−β4

.

A.2 Market 1

In order to derive the constant parameters and the investment as well as the exit threshold (θI and θE1) we

use the value matching and smooth pasting conditions. Those are given for the three different cases in the

following.

A.2.1 Case 1 - θE1 > θS1 and θE2 ≤ θS2

The value matching and smooth pasting conditions for case 1 are given by:

V1(θ)|θ=θE1
= 0 (39)

∂V1(θ)

∂θ

∣∣∣∣
θ=θE1

= 0 (40)

V1(θ)|θ=θI = V2(θ)|θ=θI − δK2 (41)

∂V1(θ)

∂θ

∣∣∣∣
θ=θI

=
∂V2(θ)

∂θ

∣∣∣∣
θ=θI

(42)

Equations (82) and (83) lead to the following expressions for the parameters A1 and A2:

A1 =
a1(β2 − 1)θ1−β1

E1
− a2β2θ−β1

E1

β1 − β2

A2 =
a1(β1 − 1)θ1−β2

E1
− a2β1θ−β2

E1

β2 − β1

From equations (84) and (85) (alongside the first two) we obtain equations (8) and (9) which implicity

give the investment and exit threshold θI and θE1
.

24



*Draft Paper: Please do not distribute without authors’ permission

A.2.2 Case 2 - θE1 < θS1 < θI and θE2 ≤ θS2

For case 2 the corresponding value matching and smooth pasting conditions are given by:

V1,2(θ)|θ=θE1
= 0 (43)

∂V1,2(θ)

∂θ

∣∣∣∣
θ=θE1

= 0 (44)

V1,1(θ)|
θ=

c+K1
µ

= V1,2(θ)|
θ=

c+K1
µ

(45)

∂V1,1(θ)

∂θ

∣∣∣∣
θ=

c+K1
µ

=
∂V1,2(θ)

∂θ

∣∣∣∣
θ=

c+K1
µ

(46)

V1,1(θ)|θ=θI = V2(θ)|θ=θI − δK2 (47)

∂V1,1(θ)

∂θ

∣∣∣∣
θ=θI

=
∂V2(θ)

∂θ

∣∣∣∣
θ=θI

(48)

Equations (86) through (89) leads to the following expressions for the parameters B1 −B4:

B1 =
−a1(β2 − 1)

(
c+K1

µ

)1−β1

+ β2
cK1+K

2
1

r

(
c+K1

µ

)−β1

β2 − β1
+B3

B2 =
−a1(β1 − 1)

(
c+K1

µ

)1−β2

+ β1
cK1+K

2
1

r

(
c+K1

µ

)−β2

β1 − β2
+B4

B3 = θ−β1

E1

β2
β2 − β1

F

r

B4 = θ−β2

E1

β1
β1 − β2

F

r

The equations (10) and (11) are obtained from (90) and (91), where the first explicitly gives an expression

for θE1 and the latter an implicit expression for θI .

A.2.3 Case 3 - θE1 < θI < θS1 and θE2 ≤ θS2

The value matching and smooth pasting conditions for this case are given by

V1(θ)|θ=θE1
= 0 (49)

∂V1(θ)

∂θ

∣∣∣∣
θ=θE1

= 0 (50)

V1(θ)|θ=θI = V2(θ)|θ=θI − δK2 (51)

∂V1(θ)

∂θ

∣∣∣∣
θ=θI

=
∂V2(θ)

∂θ

∣∣∣∣
θ=θI

(52)

As before, from the first two equations (92) and (93) result in the following expressions for the parameters

C1 and C2, respectively.
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C1 = θ−β1

E1

β2
β2 − β1

F

r

C2 = θ−β2

E1

β1
β1 − β2

F

r

The equations (12) and (13) are obtained from (94) and (95), where the first explicitly gives an expression

for θE1
and the latter an implicit expression for θI .

For the other three cases we have the same value matchings and smooth pastings, the only change is

on V2, therefore the values of A, B and C do not change. Whereas the expressions for θI and θE1 change

accordingly, but are obtained like in the previous cases.

A.3 Market 2

In order to derive the constant parameter A we study the decision to exit the market, we can write down

the following value matching and smooth pasting conditions:

V2(θ) =
γ2θ2

4(r − 2α2 − σ2)
− F

r
+Aθβ4 .

V2(θ)|θ=θE2
= 0, (53)

∂V2(θ)

∂θ

∣∣∣∣
θ=θE2

= 0. (54)

Solving equations (96) to (97) one can easily derive the exit threshold θE2
and the expressions for the

parameter A:

θE2 =

√
F

γ2r
4(r − 2α2 − σ2)

(
β4

β4 − 2

)
A = θ−β4

E2

F

r

(
2

2− β4

)
.

A.4 Market 1

A.4.1 Case 1 - θE1
> c

µ

Value matching and smooth pasting for this case give:

V1(θ)|θ=θE1
= 0 (55)

∂V1(θ)

∂θ

∣∣∣∣
θ=θE1

= 0 (56)

V1(θ)|θ=θI = V2(θ)|θ=θI − I (57)

∂V1(θ)

∂θ

∣∣∣∣
θ=θI

=
∂V2(θ)

∂θ

∣∣∣∣
θ=θI

(58)
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Equations (98) and (99) lead to the following expressions for the parameters A1 and A2:

A1 =
b1(β2 − 2)θ2−β1

E1
− b2(β2 − 1)θ1−β1

E1
+ b3β2θ

−β1

E1

β1 − β2

A2 =
b1(β1 − 2)θ2−β2

E1
− b2(β1 − 1)θ1−β2

E1
+ b3β1θ

−β2

E1

β2 − β1

From equations (100) and (101) (alongside the first two) we obtain equations (23) and (24) which implicity

give the investment and exit threshold θI and θE1
.

A.4.2 Case 2 - θE1
< c

µ < θI

Value matching and smooth pasting for this case give:

V1,2(θ)|θ=θE1
= 0 (59)

∂V1,2(θ)

∂θ

∣∣∣∣
θ=θE1

= 0 (60)

V1,1(θ)|θ= c
µ

= V1,2(θ)|θ= c
µ

(61)

∂V1,1(θ)

∂θ

∣∣∣∣
θ= c

µ

=
∂V1,2(θ)

∂θ

∣∣∣∣
θ= c

µ

(62)

V1,1(θ)|θ=θI = V2(θ)|θ=θI − I (63)

∂V1,1(θ)

∂θ

∣∣∣∣
θ=θI

=
∂V2(θ)

∂θ

∣∣∣∣
θ=θI

(64)

Equations (102) through (105) leads to the following expressions for the parameters B1 −B4:

B1 =
b1(β2 − 2)

(
c
µ

)2−β1

− b2(β2 − 1)
(
c
µ

)1−β1

+ β2(b3 + b5)
(
c
µ

)−β1

β1 − β2
+B3

B2 =
b1(β1 − 2)

(
c
µ

)2−β2

− b2(β1 − 1)
(
c
µ

)1−β2

+ β1(b3 + b5)
(
c
µ

)−β2

β2 − β1
+B4

B3 = θ−β1

E1

β2
β2 − β1

b5

B4 = θ−β2

E1

β1
β1 − β2

b5

The equations (25) and (26) are obtained from (106) and (107), where the first explicitly gives an expres-

sion for θE1 and the latter an implicit expression for θI .

A.4.3 Case 3 - θE1 < θI <
c
µ

The value matching and smooth pasting conditions for this case are given by
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V1(θ)|θ=θE1
= 0 (65)

∂V1(θ)

∂θ

∣∣∣∣
θ=θE1

= 0 (66)

V1(θ)|θ=θI = V2(θ)|θ=θI − I (67)

∂V1(θ)

∂θ

∣∣∣∣
θ=θI

=
∂V2(θ)

∂θ

∣∣∣∣
θ=θI

(68)

As before, from the first two equations (92) and (93) result in the following expressions for the parameters

C1 and C2, respectively.

C1 = θ−β1

E1

β2
β2 − β1

b5

C2 = θ−β2

E1

β1
β1 − β2

b5

The equations (27) and (28) are obtained from (110) and (111), where the first explicitly gives an expres-

sion for θE1
and the latter an implicit expression for θI .

B Proofs

B.1 Proof of Proposition 1

Now assume that V1(.) in that proposition is a candidate for the optimal value function, with three cases. In

the following we verify that V1(.) it indeed satisfies all the sufficient conditions for being the optimal value

function specified in Theorem 10.4.1 of ?. Oksendal’s φ(.), f(.) and g(.) are here given by V1(.), Π1(.) and

V2(θ,K2)− I(K2), respectively. And we have that V = <+
0 , D = (θE1

, θI), therefore ∂D = {θE1
, θI}.

Conditions (iii), (iv), (viii) and (ix) hold trivially because θ follows a geometric Brownian motion. V1(.)

is continuous differentiable in V since we impose the value matching and smooth pasting conditions in

∂D, alongside θS1
(see equations (82) through (95)), which relates with (i). Furthermore, V1(.) is twice

continuously differentiable except at ∂D∪{θS1}. Since V1(.) is a polynomial in θ, the second order derivatives

of V1(.) are finite near ∂D, which checks condition (v).

Moreover, we introduce the partial differential operator L applied to the process {θ(t); t ≥ 0}:L = ∂
∂t +

α(θ)θ ∂∂θ + 1
2σ

2θ2 ∂2

∂θ2 . But since the time-dependence of the return function is only throufh the discount

factor e−rt, the infinitesimal generator can be replaced by:

L = −r + α1θ
∂

∂θ
+

1

2
σ2θ2

∂2

∂θ2

To obtain (ii) we use similar reasoning as ?. To achieve (vi) and (vii) we consider one case of V1, while for

the other cases similar calculations will apply.
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V1(θ) =


µK1θ
r−α1

− cK1+K
2
1+F

r +B1θ
β1 +B2θ

β2 for θ ≥ c+K1

µ

−Fr +B3θ
β1 +B4θ

β2 for θ < c+K1

µ

LV1(θ) =

 −µK1θ + (cK1 +K2
1 + F ) for θ ≥ c+K1

µ

F for θ < c+K1

µ

Therefore condition (vii) holds since LV1(θ) + Π1(θ) = 0. For condition (vi) we proceed similarly as ?. �

B.2 Proof of Proposition 2

All the calculus needed are stated in Appendix A.2. �

B.3 Proof of Proposition 3

The proof is similar to the proof of Proposition 1, therefore we omit it. �

B.4 Proof of Proposition 2

All the calculus needed are stated in Appendix A.4. �

B.5 Proof of Proposition 5

First we show that Π2 is convex for both cases.

For the case ”Model - Capacity, Timing” the profit function is given by:

Π2(θ) =

 γK2θ −K2
2 − F for θ > K2

γ ,

−F for θ ≤ K2

γ .

Let θx = xθ1 + (1− x)θ2, where x ∈ (0, 1). If θ1, θ2 > (<)K2

γ then the convexity obviously holds. For the

case θ1 ≤ K2

γ ≤ θ2 then:

• If θx ≤ K2

γ :

Π2(θx) ≤ xΠ2(θ1) + (1− x)Π2(θ2)

⇔ −F ≤ x(−F ) + (1− x)(γK2θ2 −K2 − F )⇔ K2

γ
≤ θ2

• If θx >
K2

γ :

Π2(θx) ≤ xΠ2(θ1) + (1− x)Π2(θ2)

⇔ γK2(xθ1 + (1− x)θ2)−K2 − F ≤ x(−F ) + (1− x)(γK2θ2 −K2 − F )⇔ θ1 ≤
K2

γ
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For the Benchmark model, the profit function is given by

Π2(θ) =
γ2θ2

4
− F.

which is obviously convex.

Taking into account that in both cases the profit function Π(.) is convex for every θ1, θ2 and x ∈ (0, 1),

we obtain the following inequality:

V2(θx) = sup
τ̃

IEθx

[∫ τ̃

0

e−rtΠ2(θ2(t))dt

]
,

= sup
τ̃

IEθx

[∫ τ̃

0

e−rtΠ2

(
θxe

((
α2−σ

2

2

)
t+σzt

))
dt

]
,

≤ x sup
τ̃

IEθ1

[∫ τ̃

0

e−rtΠ2

(
θ1e

((
α2−σ

2

2

)
t+σzt

))
dt

]
+ (1− x) sup

τ̃
IEθ2

[∫ τ̃

0

e−rtΠ2

(
θ2e

((
α2−σ

2

2

)
t+σzt

))
dt

]
,

= xV2(θ1) + (1− x)V2(θ2), (69)

which concludes our proof. �

B.6 Proof of Proposition 6

Let µ > 0 and denote by V2(θ, α2) the value function V2 with the dependence on the drift of the process

here denoted by α2.

V2(θ, α2) = sup
τ̃

IEθ2

[∫ τ̃

0

e−rtΠ2

(
θe

((
α2−σ

2

2

)
t+σzt

))
dt

]
,

≤ sup
τ̃

IEθ2

[∫ τ̃

0

e−rtΠ2

(
θe

((
α2+µ−σ

2

2

)
t+σzt

))
dt

]
, (70)

≤V2(θ, α2 + µ). (71)

Where inequality (70) follows from the fact that e

((
α2−σ

2

2

)
+σzt

)
< e

((
α2+µ−σ

2

2

)
+σzt

)
with probability 1

and Π2 is non-decreasing in θ. The inequality becomes strict if τ̃ > 0 (i.e. θ2(0) > θE2). Moreover, as τ̃

is the optimal stopping time for the problem with drift α2 then it is suboptimal for the problem with drift

α2 + µ, which proves inequality (71).

Concerning the non-decreasing behavior of V2 as a function of the volatility σ, we refer to ?, page 273,

where in a note he refers that for convex contract functions the option price, when the stock price follows a

geometric Brownian motion, is non-decreasing in the volatility. This result holds in our case as V2 is convex

(see Proposition 5).

Finally, V2 is non-decreasing in θ2(0) because Π2 is also non-decreasing in θ. �
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B.7 Proof of Proposition 7

Noting that θE2
= inf{θ : V2(θ) > 0} the result follows in view of the last proposition. Since V2 increases

with the increase of α2, σ or θ2(0), its graphic will rise, and therefore zero will slide to the left, decreasing

with the increase of any of those variables. �

B.8 Proof of Proposition 8

In the following we show that the profit function in region 1, Π1(.), is a convex function.

For the case ”Model - Capacity, Timing” the profit function is given by:

Π1(θ) =

 µK1θ − (cK1 +K2
1 + F ) for θ > c+K1

µ ,

−F for θ ≤ c+K1

µ .

Let θx = xθ1 + (1 − x)θ2, where x ∈ (0, 1). If θ1, θ2 > (<) c+K1

µ then the convexity obviously holds. For

the case θ1 ≤ c+K1

µ ≤ θ2 it holds that

• if θx ≤ c
µ :

Π1(θx) ≤ xΠ1(θ1) + (1− x)Π1(θ2)

⇔− F ≤ x(−F ) + (1− x)(µK1θ2 − (cK1 +K2
1 + F ))

⇔c+K1

µ
≤ θ2

• If θx >
c
µ :

Π1(θx) ≤ xΠ1(θ1) + (1− x)Π1(θ2)

⇔µK1(xθ1 + (1− x)θ2)− (cK1 +K2
1 + F ) ≤ x(−F ) + (1− x)(γK2θ2 −K2

1 − F )

⇔θ1 ≤
c+K1

µ

which shows the convexity for the remaining cases.

For the Benchmark model, the profit function is given by:

Π1(θ) =


(
µθ−c

2

)2
− F for θ > c

µ ,

−F for θ ≤ c
µ .

Let θx = xθ1 + (1− x)θ2, where x ∈ (0, 1). If θ1, θ2 > (<) cµ then the convexity obviously holds. For the

case θ1 ≤ c
µ ≤ θ2 it holds that
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• if θx ≤ c
µ :

Π1(θx) ≤ xΠ1(θ1) + (1− x)Π1(θ2)

⇔− F ≤ x(−F ) + (1− x)

((
µθ − c

2

)2

− F

)

⇔ c

µ
≤ θ2

• if θx >
c
µ :

Π1(θx) ≤ xΠ1(θ1) + (1− x)Π1(θ2)

⇔
(
µ(xθ1 + (1− x)θ2)− c

2

)2

− F ≤ x(−F ) + (1− x)

((
µθ2 − c

2

)2

− F

)

⇔θ1 ≤
c

µ

which shows the convexity for the remaining cases.

In a next step, we define

F (θ1) =

[∫ τ

0

e−rtΠ1 (θ1(t)) dt | θ1(0) = θ1

]
.

Then F (θ1) is a convex function in θ1 by the same reasoning that we used for inequality (69).

Finally, taking into account that the maximization of V2 over K2 preserves the convexity of the function,

as well as the maximum and the sum of two convex functions, then

V(θ1) = sup
τ̃

IEθ1

[∫ τ̃

0

e−rtΠ1(θ1(t))dt+ e−rτ̃ max

{
0,max

K2

(V2(θ1(τ̃),K2)− I(K2))

}]
,

where I(K2) is δK2 in the first model and I in the Benchmark model, is also a convex function. �

B.9 Proof of Proposition 9

By proposition 6, V2 is nondecreasing in α2, and since α2 affects only market 2, V is also nondecreasing in

α2.

Denote by V(θ, α1) the value function V with the dependence on the drift of the process in market 1, here

denoted by α1. Let µ > 0 such that α1 + µ < α2.

32



*Draft Paper: Please do not distribute without authors’ permission

V(θ(0), α1) = sup
τ̃(α1)

IEθ

[∫ τ̃(α1)

0

e−rtΠ1

(
θ(0)e

((
α1−σ

2

2

)
t+σzt

))
dt

+ e−rτ̃(α1) max

{
0,max

K2

(
V2(θ(τ̃(α1)), α2)− I(K2)

)}]
≤ sup
τ̃(α1)

IEθ

[∫ τ̃(α1)

0

e−rtΠ1

(
θ(0)e

((
α1+µ−σ

2

2

)
t+σzt

))
dt (72)

+ e−rτ̃(α1) max

{
0,max

K2

(
V2(θ(τ̃(α1))e

µτ̃(α1) , α2)− I(K2)
)}]

(73)

≤V(θ(0), α1 + µ) (74)

where in (72) we use the fact that Π1 is non-decreasing. We showed before that V2 is increasing with the

initial value θ2(0), which proves (73) of the inequality. Finally in (74) the sub-optimality of τ̃(α1) is used.

In order to prove the behavior of V as a function of σ, we follow Theorem 4 of ?. Consider d(x) = (r−α2)x,

which is an increasing function on <+; then all the conditions of Theorem 4 of ? are satisfied.1. Let

ν(θ0) = Eθ0
[
e−rτ̃f(θ(τ̃))

]
, where in our case f denotes the return of stopping at τ̃ (which includes the

return of max{0, V2}). Since max{0, V2} is non-decreasing in σ, as proved before, we conclude based on

Theorem 4 that V is a non-decreasing function of the volatility parameter σ. �

B.10 Proof of Proposition 10

Let θ(t) denote the demand level at time t, with t < τ1, so that the drift coefficient of the diffusion equation

of θ is α1. Therefore it follows that θ(t) is given by:

θ(t) = θ(0) exp

{(
α1 −

σ2

2

)
t+ σW (t)

}

θ(t) > θI ⇔W (t) >
1

σ
ln

(
θI
θ(0)

)
− 1

σ

(
α1 −

σ2

2

)
t

θ(t) < θE1
⇔W (t) <

1

σ
ln

(
θE1

θ(0)

)
− 1

σ

(
α1 −

σ2

2

)
t

We wish to have θ(t) > θI before θ(t) < θE1
:

By theorem 4.1 of ?, we have that if Y(t) is a Wiener Process, if γ1 > 0, γ2 < 0, δ1 = δ2 6= 0, then the

probability that Y (t) ≥ γ1 + δ1t for a smaller t than any t for which Y (t) ≤ γ2 + δ2t is:

PI =
e−2γ2δ1 − 1

e2(γ1−γ2)δ1 − 1

For our case we have that

1In ?, the function d is denoted by θ
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γ1 =
1

σ
ln

(
θI
θ(0)

)
> 0

γ2 =
1

σ
ln

(
θE1

θ(0)

)
< 0

δ1 = − 1

σ

(
α1 −

σ2

2

)
Therefore:

e−2γ2δ1 = exp

{
ln

(
θE1

θ(0)

)(
2
α1

σ2
− 1
)}

=

(
θE1

θ(0)

)2
α1
σ2
−1

e2(γ1−γ2)δ1 = exp

{
− ln

(
θI
θ(0)

/
θE1

θ(0)

)(
2
α1

σ2
− 1
)}

=

(
θE1

θI

)2
α1
σ2
−1

So

PI =

(
θ(0)
θE1

)1−2α1
σ2 − 1(

θI
θE1

)1−2α1
σ2 − 1

�

B.11 Proof of Proposition 11

Note that

TE2 = inf

{
t : zt +

1

σ

(
σ2

2
− α2

)
t =

1

σ
ln

(
θI
θE2

)}
which is the first passage time of a Brownian motion with drift 1

σ

(
σ2

2 − α2

)
throught a level 1

σ ln
(
θI
θE2

)
.

If σ2

2 − α2 > 0, as θI > θE2 then the expected value is finite and the result follows in view of Proposition

8.5 of ?. Otherwise it is infinite, as the state 1
σ ln

(
θI
θE2

)
is null-recurrent. �

B.12 Proof of Proposition 12

The result follows in view of the example of section 10.9 of ?, with A given by α1 and B given by σ2, as the

region Ω in our case is just the interval [θE1
, θI ] (a time homogeneous region). �

A Additional Model Details

A.1 Market 2

In order to derive the constant parameters (D1, D2, D3 and G1) of the value function and the exit thresholds

for the two cases, we study the decision to exit the market. Denoting the exit threshold by θE2, we can write

down the following value matching and smooth pasting conditions for the case θE2
< θS :
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V2,2(θ)|θ=θE2
= 0, (75)

∂V2,2(θ2)

∂θ

∣∣∣∣
θ=θE2

= 0, (76)

V2,1 (θ)|
θ=

K2
γ

= V2,2 (θ)|
θ=

K2
γ
, (77)

∂V2,1 (θ)

∂θ

∣∣∣∣
θ=

K2
γ

=
∂V2,2 (θ)

∂θ

∣∣∣∣
θ=

K2
γ

, (78)

where

V2(θ,K2) =


γK2

r−α2
θ − K2

2+F
r +D1θ

β4 for θ > K2

γ =: V2,1(θ),

−Fr +D2θ
β3 +D3θ

β4 for θ ≤ K2

γ =: V2,2(θ)).
(79)

Equations (77) and (78) account for the fact that the value function has to be smooth in θ = K2

γ . Solving

equations (75) to (78) one can easily derive the exit threshold θE2 and the expressions for the parameters

D1, D2 and D3:

θE2
=

(
β4α2 − r
β4(r − α2)

)−1
β3

F
1
β3

1

γ
K

1− 2
β3

2 ,

D1 =
r − β3α2

r(r − α2)(β3 − β4)
γβ4K2−β4

2 +D3,

D2 =
r − β4α2

r(r − α2)(β3 − β4)
γβ3K2−β3

2 ,

D3 = θ−β4

E2

β3
β3 − β4

F

r
.

For the second case, i.e. θE2
> θS , the value matching and smooth pasting conditions are given by

V2(θ)|θ=θE2
= 0, (80)

∂V2 (θ)

∂θ

∣∣∣∣
θ=θE2

= 0. (81)

Solving this equation system one obtains

θE2
=

r − α2

rγ

β4
β4 − 1

(
K2 +

F

K2

)
,

G1 = − γK2

r − α2

1

β4

(
r − α2

rγ

β4
β4 − 1

(
K2 +

F

K2

))1−β4

.

A.2 Market 1

In order to derive the constant parameters and the investment as well as the exit threshold (θI and θE1) we

use the value matching and smooth pasting conditions. Those are given for the three different cases in the

following.
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A.2.1 Case 1 - θE1 > θS1 and θE2 ≤ θS2

The value matching and smooth pasting conditions for case 1 are given by:

V1(θ)|θ=θE1
= 0 (82)

∂V1(θ)

∂θ

∣∣∣∣
θ=θE1

= 0 (83)

V1(θ)|θ=θI = V2(θ)|θ=θI − δK2 (84)

∂V1(θ)

∂θ

∣∣∣∣
θ=θI

=
∂V2(θ)

∂θ

∣∣∣∣
θ=θI

(85)

Equations (82) and (83) lead to the following expressions for the parameters A1 and A2:

A1 =
a1(β2 − 1)θ1−β1

E1
− a2β2θ−β1

E1

β1 − β2

A2 =
a1(β1 − 1)θ1−β2

E1
− a2β1θ−β2

E1

β2 − β1
From equations (84) and (85) (alongside the first two) we obtain equations (8) and (9) which implicity

give the investment and exit threshold θI and θE1
.

A.2.2 Case 2 - θE1 < θS1 < θI and θE2 ≤ θS2

For case 2 the corresponding value matching and smooth pasting conditions are given by:

V1,2(θ)|θ=θE1
= 0 (86)

∂V1,2(θ)

∂θ

∣∣∣∣
θ=θE1

= 0 (87)

V1,1(θ)|
θ=

c+K1
µ

= V1,2(θ)|
θ=

c+K1
µ

(88)

∂V1,1(θ)

∂θ

∣∣∣∣
θ=

c+K1
µ

=
∂V1,2(θ)

∂θ

∣∣∣∣
θ=

c+K1
µ

(89)

V1,1(θ)|θ=θI = V2(θ)|θ=θI − δK2 (90)

∂V1,1(θ)

∂θ

∣∣∣∣
θ=θI

=
∂V2(θ)

∂θ

∣∣∣∣
θ=θI

(91)

Equations (86) through (89) leads to the following expressions for the parameters B1 −B4:

B1 =
−a1(β2 − 1)

(
c+K1

µ

)1−β1

+ β2
cK1+K

2
1

r

(
c+K1

µ

)−β1

β2 − β1
+B3

B2 =
−a1(β1 − 1)

(
c+K1

µ

)1−β2

+ β1
cK1+K

2
1

r

(
c+K1

µ

)−β2

β1 − β2
+B4

B3 = θ−β1

E1

β2
β2 − β1

F

r

B4 = θ−β2

E1

β1
β1 − β2

F

r

The equations (10) and (11) are obtained from (90) and (91), where the first explicitly gives an expression

for θE1
and the latter an implicit expression for θI .
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A.2.3 Case 3 - θE1 < θI < θS1 and θE2 ≤ θS2

The value matching and smooth pasting conditions for this case are given by

V1(θ)|θ=θE1
= 0 (92)

∂V1(θ)

∂θ

∣∣∣∣
θ=θE1

= 0 (93)

V1(θ)|θ=θI = V2(θ)|θ=θI − δK2 (94)

∂V1(θ)

∂θ

∣∣∣∣
θ=θI

=
∂V2(θ)

∂θ

∣∣∣∣
θ=θI

(95)

As before, from the first two equations (92) and (93) result in the following expressions for the parameters

C1 and C2, respectively.

C1 = θ−β1

E1

β2
β2 − β1

F

r

C2 = θ−β2

E1

β1
β1 − β2

F

r

The equations (12) and (13) are obtained from (94) and (95), where the first explicitly gives an expression

for θE1
and the latter an implicit expression for θI .

For the other three cases we have the same value matchings and smooth pastings, the only change is

on V2, therefore the values of A, B and C do not change. Whereas the expressions for θI and θE1 change

accordingly, but are obtained like in the previous cases.

A.3 Market 2

In order to derive the constant parameter A we study the decision to exit the market, we can write down

the following value matching and smooth pasting conditions:

V2(θ) =
γ2θ2

4(r − 2α2 − σ2)
− F

r
+Aθβ4 .

V2(θ)|θ=θE2
= 0, (96)

∂V2(θ)

∂θ

∣∣∣∣
θ=θE2

= 0. (97)

Solving equations (96) to (97) one can easily derive the exit threshold θE2
and the expressions for the
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parameter A:

θE2
=

√
F

γ2r
4(r − 2α2 − σ2)

(
β4

β4 − 2

)
A = θ−β4

E2

F

r

(
2

2− β4

)
.

A.4 Market 1

A.4.1 Case 1 - θE1 >
c
µ

Value matching and smooth pasting for this case give:

V1(θ)|θ=θE1
= 0 (98)

∂V1(θ)

∂θ

∣∣∣∣
θ=θE1

= 0 (99)

V1(θ)|θ=θI = V2(θ)|θ=θI − I (100)

∂V1(θ)

∂θ

∣∣∣∣
θ=θI

=
∂V2(θ)

∂θ

∣∣∣∣
θ=θI

(101)

Equations (98) and (99) lead to the following expressions for the parameters A1 and A2:

A1 =
b1(β2 − 2)θ2−β1

E1
− b2(β2 − 1)θ1−β1

E1
+ b3β2θ

−β1

E1

β1 − β2

A2 =
b1(β1 − 2)θ2−β2

E1
− b2(β1 − 1)θ1−β2

E1
+ b3β1θ

−β2

E1

β2 − β1

From equations (100) and (101) (alongside the first two) we obtain equations (23) and (24) which implicity

give the investment and exit threshold θI and θE1
.

A.4.2 Case 2 - θE1 <
c
µ < θI

Value matching and smooth pasting for this case give:

V1,2(θ)|θ=θE1
= 0 (102)

∂V1,2(θ)

∂θ

∣∣∣∣
θ=θE1

= 0 (103)

V1,1(θ)|θ= c
µ

= V1,2(θ)|θ= c
µ

(104)

∂V1,1(θ)

∂θ

∣∣∣∣
θ= c

µ

=
∂V1,2(θ)

∂θ

∣∣∣∣
θ= c

µ

(105)

V1,1(θ)|θ=θI = V2(θ)|θ=θI − I (106)

∂V1,1(θ)

∂θ

∣∣∣∣
θ=θI

=
∂V2(θ)

∂θ

∣∣∣∣
θ=θI

(107)
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Equations (102) through (105) leads to the following expressions for the parameters B1 −B4:

B1 =
b1(β2 − 2)

(
c
µ

)2−β1

− b2(β2 − 1)
(
c
µ

)1−β1

+ β2(b3 + b5)
(
c
µ

)−β1

β1 − β2
+B3

B2 =
b1(β1 − 2)

(
c
µ

)2−β2

− b2(β1 − 1)
(
c
µ

)1−β2

+ β1(b3 + b5)
(
c
µ

)−β2

β2 − β1
+B4

B3 = θ−β1

E1

β2
β2 − β1

b5

B4 = θ−β2

E1

β1
β1 − β2

b5

The equations (25) and (26) are obtained from (106) and (107), where the first explicitly gives an expres-

sion for θE1
and the latter an implicit expression for θI .

A.4.3 Case 3 - θE1
< θI <

c
µ

The value matching and smooth pasting conditions for this case are given by

V1(θ)|θ=θE1
= 0 (108)

∂V1(θ)

∂θ

∣∣∣∣
θ=θE1

= 0 (109)

V1(θ)|θ=θI = V2(θ)|θ=θI − I (110)

∂V1(θ)

∂θ

∣∣∣∣
θ=θI

=
∂V2(θ)

∂θ

∣∣∣∣
θ=θI

(111)

As before, from the first two equations (92) and (93) result in the following expressions for the parameters

C1 and C2, respectively.

C1 = θ−β1

E1

β2
β2 − β1

b5

C2 = θ−β2

E1

β1
β1 − β2

b5

The equations (27) and (28) are obtained from (110) and (111), where the first explicitly gives an expres-

sion for θE1
and the latter an implicit expression for θI .
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