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a b s t r a c t

Data envelopment analysis (DEA) is a data-driven non-parametric approach for measuring the efficiency
of a set of decision making units (DMUs) using multiple inputs to generate multiple outputs. Convention-
ally, DEA is used in ex post evaluation of actual performance, estimating an empirical best-practice fron-
tier using minimal assumptions about the shape of the production space. However, DEA may also be used
prospectively or normatively to allocate resources, costs and revenues in a given organization. Such
approaches have theoretical foundations in economic theory and provide a consistent integration of
the endowment-evaluation-incentive cycle in organizational management. The normative use, e.g. allo-
cation of resources or target setting, in DEA can be based on different principles, ranging from maximi-
zation of the joint profit (score), combinations of individual scores or game-theoretical settings. In this
paper, we propose an allocation mechanism that is based on a common dual weights approach. Com-
pared to alternative approaches, our model can be interpreted as providing equal endogenous valuations
of the inputs and outputs in the reference set. Given that a normative use implicitly assumes that there
exists a centralized decision-maker in the organization evaluated, we claim that this approach assures a
consistent and equitable internal allocation. Two numerical examples are presented to illustrate the
applicability of the proposed method and to contrast it with earlier work.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Data envelopment analysis (DEA) pioneered by Farrell (1957)
and later developed by Charnes, Cooper, and Rhodes (1978) is a
non-parametric method, so-called CRS, to frontier analysis for
measuring efficiency of a set of decision making units (DMUs).
Mathematically, DEA utilizes a linear programming model which
characterizes the relationship among multiple inputs and multiple
outputs by envelopment of the observed data to determine a piece-
wise linear empirical best practice frontier. The DMUs placed on
the frontier take unity score and they are called the frontier (effi-
cient) DMUs. The radial or additive distance of the DMU from the
frontier can be decomposed in different effects, distinguishing
technical, scale, cost and congestion efficiency components. More-
over, the non-parametric approach allows the identification of real
‘‘peers’’ constituting the basis of comparison for the DMU, thereby
providing managerially valuable information for performance
analysis and improvement. In fact, DEA is the most well-published

efficiency measurement method with over 4000 published papers
(cf. Emrouznejad, Barnett, & Gabriel, 2008). The immediate and
conventional justification and application of DEA is in ex post per-
formance analysis, evaluating the situation for the individual DMU
as well as the technology (frontier) after the fact. However, DEA
can also be used for predictive, prospective and normative pur-
poses by managers and organizations. Depending on application,
the evaluator-principal may anticipate, direct or incentivize the
DMUs to reposition in the production space. In a normative setting,
the evaluator controls the inputs or outputs of the DMU by setting
targets (for inputs or outputs) and/or by allocating fixed resources,
products, revenues or budgets. Let us first clarify the difference be-
tween the terms ‘‘resource allocation’’ and ‘‘target setting’’ in the
DEA terminology, following Beasley (2003, p. 208). The resource
allocation may happen when the organization has restricted input
resources or restricted output possibilities. In such circumstances,
the organization must allocate the fixed input/output levels opti-
mally among the DMUs. For example, adding additional raw mate-
rial for processing among plants must be based on the overall
profitability contribution of its use by any given plant. The target
setting for input and output can be defined as a certain input/out-
put value for each DMU without reference to organizational limita-
tions. Thus, whereas resource allocation has a normative character,
given a production possibility, target setting has a prospective
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flavor, potentially shifting the frontier to achieve unprecedented
levels of performance. The reader immediately distinguishes the
difference when considering e.g. a sales team, where resources
could be staff and targets could be set in terms of sales volume.

Alluded to already in early work by Banker, Charnes, Cooper,
and Clarke (1989), the use of DEA for activity planning received
its theoretical foundations in the seminal work by Bogetoft
(1993, 1994, 2000). Indeed, activity planning and resource alloca-
tion based on DEA-type frontiers is optimal under several different
information economic settings. An influential model is the simple
resource planning model by Golany and Tamir (1995) in which a
resource vector is allocated among DMUs as to maximize the
sum of joint output. Cook and Kress (1999) proposed a two-phase
resource allocation mechanism to allocate the fixed cost between
the DMUs using the principle of Efficiency Invariance and Pareto [in-
put] Optimality. The first phase applied the output-oriented (input-
oriented) CRS model to obtain the technical efficiency of the DMUs
and the second phase allocated the fixed resource to all units
where the efficiency of DMUs remains unchanged after resource
allocation. Therefore, Cook and Zhu (2005) developed Cook and
Kress’s method (1999) into implementable a two-phase cost allo-
cation method. The first phase of Cook and Zhu’s method (2005)
consists of three steps; (1) applying the conventional CRS model,
(2) determining the efficient and inefficient DMUs, (3) obtaining
the inefficiency values of all the inefficient units and the second
phase of Cook and Zhu’s method (2005) allocated the constant re-
source to DMUs based on the previous steps of the first phase. In
fact, the cost allocation method proposed by Cook and Zhu
(2005) only provided one feasible solution, which may not be opti-
mal. With the similar assumption proposed by Cook and Kress
(1999) on treating the costs allocation as an extra input, Beasley
(2003) developed a five-phase DEA procedure for allocating fixed
costs and setting output target to deal with the problem of non-
uniqueness in Cook and Kress (1999) and determine a unique cost
allocation by maximizing the average efficiency of all DMUs. The
Beasley (2003) procedure was composed of (1) finding cross-effi-
ciency (the maximum average DMU efficiency), (2) identifying
the flexibility associated with the fixed resource allocation for each
DMU, (3) minimizing the distance between the maximum and
minimum proportions, over and above the minimum fixed re-
source for each DMU, (4) investigating whether there is any flexi-
bility remaining with regard to the fixed resource allocation for
each DMU, and (5) determining whether there is a unique fixed re-
source allocation. Amirteimoori and Kordrostami (2005) proposed
an alternative DEA-based allocation approach to obtain a unique
allocation in terms of combining the efficiency invariance proposed
by Cook and Kress (1999) as well as taking account of the addi-
tional constraints proposed by Beasley (2003). Jahanshahloo, Hos-
seinzadeh Lotfi, Shoja, and Sanei (2004) indicated the shortcoming
of Cook and Kress (1999)’s approach and they introduced a simple
method to calculate a costs allocation without solving any linear
programming model. Lin (2011) extended Cook and Zhu (2005)’s
method for allocating fixed costs with some additional constraints
based on the DEA technique. Lozano and Villa (2004) addressed an
intraorganizational scenario where a centralized supervisor con-
trols all DMUs and the supervisor not only wants units to be effi-
cient but is also concerned about total input consumption and
total output production. Yan, Wei, and Hao (2002) proposed a
method in the inverse DEA for estimating inputs/outputs of a
DMU when some or all of its input/output DMUs are changed such
that the efficiencies are preserved. They considered preference
cone constraints as well as using multi-objective programming
(MOP) in their formulation. Also, their method argued how to exe-
cute the additional resource allocation problem in the inverse DEA
problem. Korhonen and Syrjänen (2004) developed a method for
treating resource allocation with a centralized decision of manage-

ment. Their aim is to maximize the total output values of DMUs by
allocating the fixed resources and they assumed that DMUs are
able to change production in production possibility set (PPS).
Jahanshahloo, Hosseinzadeh Lotfi, and Moradi (2005) presented a
method for allocating a fixed output in a fair way among DMUs
without solving any linear program. Amirteimoori and Shafiei
(2006) proposed a DEA-based method for removing a fix resource
from all DMUs in a fair way such that the efficiency of units before
and after reduction remains unchanged. Li and Cui (2008) pre-
sented a resource allocation framework consisting of various re-
turns to scale model, inverse DEA model, common weight
analysis model, and extra resource allocation algorithm. Guedes
de Avellar, Milioni, and Rabello (2007) developed a DEA model
where a fixed input was fairly allocated among the DMUs, by
assuming the existence of a geometric place with a spherical shape
for the DEA frontier. Xiaoya and Jinchuan (2008) extended the re-
source allocation approach for VRS and inverse DEA formulations.
Trappey and Chiang (2008) present an application of DEA in new
product development activities and resource planning within a
profit center for achieving the goal of maximal profit. Li, Yang,
Liang, and Hua (2009) developed a DEA-based approach to allocat-
ing fixed cost among various DMUs based on the combination of
the allocated cost with other cost measures to determine a unique
allocation. In their approach the relationship between the allocated
cost and the efficiency score were introduced and the fixed cost
was considered as a dependent input. Pachkova (2009) proposed
a DEA-based model to reallocate inputs in which her model was
trade-off between the maximum allowed reallocation cost and
the highest possible summation of the efficiency of all DMUs.
Vaz, Camanho, and Guimarães (2010) applied the network-DEA
model to evaluate the efficiency of the retail stores with several
selling sections. In their approach, the VRS model was first used
for evaluating the efficiency of similar sections in the stores, then,
for efficiency improvement they applied the resource reallocation
method developed in (Färe, Grabowski, Grosskopf, & Kraft, 1997)
to set targets for the section. Amirteimoori and Mohaghegh Tabar
(2010) proposed a three-phase DEA procedure in the presence of
a fixed resource allocation and a fixed output target by defining
an additional input and output for all DMUs, respectively. The first
phase used the multiplier CRS model to determine the technical
input-efficiency of DMUs, the second phase applied a mathemati-
cal model to allocate a fixed resource and set a fixed output target
such that the DMUs become efficient, and the third phase re-eval-
uated the efficiencies of DMUs, similar to phase 1, in the presence
of the new assigned input and output from phase 2. Lozano, Villa,
and Canca (2011) employed several radial and non-radial DEA
models for resource allocation and target setting in the presence
of some integer inputs. Milioni, Avellar, Gomes, and Soares de Mello
(2011) presented a parametric DEA method, namely the ellipsoidal
frontier model, in the resource allocation context. Bi, Ding, Luo, and
Liang (2011) proposed a common-weight DEA method for resource
allocation and target setting in the parallel production system.

In target setting for DEA, the intuition may suggest the question
to be trivial, as DEA per se indicates the ‘‘closest’’ projection on the
efficiency frontier for inefficient DMUs. However, the seminal work
by Golany (1988) established that preference information was vital
in determining targets in DEA. Thanassoulis and Dyson (1992)
extended this idea to allow for non-radial improvement targets
on inputs or outputs to maximize decision maker utility.
Athanassopoulos (1995) implemented the latter model in goal
programming and DEA to two types of targets; one set related to
overall effectiveness or profit, another set related directly to the
efficiency of the DMUs. Similar approaches using preference
weights and dual weights were suggested in Athanassopoulos
(1996), Athanassopoulos and Triantis (1998). Athanassopoulos,
Lambroukos, and Seiford (1999) utilized the DEA models to provide

632 F. Hosseinzadeh Lotfi et al. / Computers & Industrial Engineering 64 (2013) 631–640



Author's personal copy

target setting scenarios based on two aspects. In the first aspect,
the evaluation of the targets was implemented using the inputs
and outputs simultaneously, and DMUs are permitted to get more
resources for producing extra outputs. In the second aspect, the
target setting process can be implemented in the presence of
the decision makers. These approaches naturally lead us over to
the question of dual weight setting in DEA.

Conventionally, DEA formulations draw on endogenous individ-
ual weights, which come with both pros and cons. The advantage is
that each DMU can augment its efficiency using the suitable
weights compared to the other DMUs while the disadvantage of
freedom in the selection of weights is that solving different models
provide different weights for inputs and outputs which may not be
rational and acceptable from the decision maker. To deal with the
disadvantage, several methods have been reported in the DEA lit-
erature. Cook, Roll, and Kazakov (1990) and Roll, Cook, and Golany
(1991) are the first to introduce the common weights in DEA
models for evaluating highway maintenance units. Thompson,
Langemeier, Lee, Lee, and Trall (1990) shown the role of multiplier
bounds in calculating the efficiency of the DMUs and they used a
special case of Assurance Region in order to construct the linear
homogeneous conditions on the multipliers in efficiency analysis.
Cook and Kress (1990, 1991) proposed a subjective ordinal prefer-
ence ranking based on DEA in the presence of the upper and lower
bound on weights. Roll and Golany (1993) suggested an alternative
method of treating factor weights in the DEA approach where their
method involved two following steps: (1) ‘‘Normalizing’’ the inputs
and outputs so that the magnitude of the parameters would not
influence the model; (2) Setting restrictions on the weights of
the model. Hosseinzadeh Lotfi, Jahanshahloo, and Memariani
(2000) and Jahanshahloo, Memariani, Hosseinzadeh Lotfi, and
Rezaei (2005) presented two different common-weight DEA
models in which the efficiency of the DMUs can be obtained by a
non-linear program in place of solving n linear programming
models. Hosseinzadeh Lotfi et al. (2000) utilized the concept of
MOP and the common set of weights to compute efficiency score
of all DMUs. Jahanshahloo, Memarianiet, et al. (2005) presented a
method based on the common weights to measure the efficiency
and to rank the efficient DMUs in the two-step process. Amin
and Toloo (2007) presented a model in order to find the most efficient
DMUs by using a common set of weights. Liu and Hsuan Peng (2008)
introduced a DEA method to specify a common set of weights in
order to rank efficient DMUs. Jahanshahloo, Hosseinzadeh Lotfi,
Khanmohammadi, Kazemimanesh, and Rezai (2010) used an ideal
line for determining common multipliers for inputs and outputs to
rank of the DMUs. Wang and Chin (2010) proposed a framework
for measuring cross-efficiency via the common set of weights. Davo-
odi and Zhiani Rezai (2012) recently extended a common-weights
DEA approach involving a linear programming problem to gauge
the efficiency of the DMUs with respect to the multi-objective model.

In this paper, we have four main methodological contributions.
First, we propose a common-weights DEA method to deal with
zero-value weights and total weights flexibility. The method intro-
duced by Liu and Hsuan Peng (2008) inspired us to propose this
common-weights DEA model in this study. The aim of Liu and Hsu-
an Peng (2008)’s method is to rank the DEA efficient DMUs while
our model (7) is able to obtain the efficiency score of all DMUs. Sec-
ond, we create a new model to show how adequately the fixed
costs or resources can be allocated to the DMUs and accordingly
how adequately the expected common increase in all outputs set
by the decision maker can be allocated to the DMUs. Third, by
incorporating the created model all DMUs will be efficient. To
the best of our knowledge, this study is the first one applying a
common-weights DEA method for resource allocation when the
efficiencies are taken into account. Finally, we apply the proposed
model to two instances to demonstrate the features.

The outline of the paper is organized as follows. In Section 2, we
introduce a procedure of finding a common set of weights by
means of multi-objective program and goal programming con-
cepts. In Section 3, we present the details of the proposed method
based on the resources allocation and target setting. To illustrate
the applicability of the proposed model a comparative study using
two different data from Cook and Kress (1999) and Amirteimoori
and Mohaghegh Tabar (2010) is presented in Section 4. The paper
ends with some conclusions and future research directions in
Section 5.

2. The common-weights DEA model

As starting point, we use a conventional radial input-oriented
DEA formulation, cf. Charnes et al. (1978). Consider a set of n
DMUs, j = 1, . . ., n, and producing s outputs yrj(r = 1, . . ., s) using m
inputs xij(i = 1, . . ., m). The radial input-efficiency of DMUo,
o e {1, . . ., n}, under the assumption of constant returns to scale
(CRS), can be obtained by solving the following linear program-
ming problem:

max
Xs

r¼1

uryro

s:t:
Xm

i¼1

v ixio ¼ 1;

Xs

r¼1

uryrj �
Xm

i¼1

v ixij 6 0; 8j

ur; v i P e; 8r; i:

ð1Þ

where ur and vi in model (1) are the dual weights assigned to the rth
output and the ith input, respectively and e presents a non-Archi-
medean infinitesimal constant. DMUo is defined as [technically] in-
put-efficient if and only if

Ps
r¼1u�r yro ¼ 1 and there exists at least one

optimal (u�, v�) of model (1) with u�P e and v�P e.
The original CRS (Charnes et al., 1978) and VRS (Banker, Char-

nes, & Cooper, 1984) models involved a set of unbounded input
and output weights because no restrictions were imposed on mul-
tipliers. Therefore a score of 100% efficiency can be achieved for a
DMU through several various ways. For instance, a DMU can
spread its weights equally among the different inputs and outputs,
but in DEA a DMU mostly is a maverick by taking a huge weight on
one or few factors and assigning a zero or very small weights e to
other factors. That is to say, the DEA model often gives excessively
high or low values to multipliers in an attempt to drive the effi-
ciency score as high as possible. Moreover, the weight flexibility
in DEA provides often widely varying individual implicit resource
prices for inputs and outputs that may be difficult to rationalize.
In the four following situations, we need additional control on
weights (Charnes, Cooper, Lewin, & Seiford, 1994): (i) the analysis
directly declines some factors by assigning a zero (or epsilon)
weight to a factor, (ii) the results deny the opinions of the decision
maker, (iii) the decision maker has strong preferences about the
relative importance of some given factors, and (iv) when the num-
ber of factors is proportionately large in comparison with the num-
ber of the DMUs under evaluation, the model fails to discriminate
and most DMUs are classed as efficient.

To deal with the above-mentioned problems, many attempts
have been explored further restricting weights in DEA (see e.g.,
Allen, Athanassopoulos, Dyson, & Thanassoulis, 1997 for a good
overview). The common-weights DEA introduced by Cook et al.
(1990) and Roll et al. (1991) is known as one of the popular meth-
ods in which all DMUs can be evaluated by the unique weights. The
major aim of this method is to attain a common set of weights so
that all DMUs simultaneously receive the highest (average)

F. Hosseinzadeh Lotfi et al. / Computers & Industrial Engineering 64 (2013) 631–640 633



Author's personal copy

efficiency score. Therefore, contrary to the original DEA, the com-
mon-weights DEA method does not give the weight flexibility to
the DMUs to achieve the score of 100% efficiency.

Multi-objective optimization (MOP) is the process of simulta-
neously optimizing two or more conflicting objectives subject to
certain constraints. Multi-objective fractional programming
(MOFP) is a specific MOP method for fractional functions which
are to be maximized subject to a set of constraints in order to
tackle such complex and ill-structured decision problems.

Let us proceed with our earlier assumption that there are n
DMUs under consideration with m inputs and r outputs. The fol-
lowing MOFP problem can be used to maximize the efficiency
score of all DMUs simultaneously:

max W ¼
Ps

r¼1uryr1Pm
i¼1v ixi1

;

Ps
r¼1uryr2Pm
i¼1v ixi2

; . . . ;

Ps
r¼1uryrjPm
i¼1v ixij

( )

s:t:

Ps
r¼1uryrjPm
i¼1v ixij

6 1; 8j;

ur ;v i P e; 8r; i:

ð2Þ

To solve the above MOFP problem, many methods have been devel-
oped in the optimization literature. Goal programming (GP) is one
of the seminal methods for multi-objective optimization (see Tamiz,
Jones, & Romero, 1998, for a recent survey). In the GP method, the
decision maker is requested to set aspiration levels for the objective
functions. Then, deviations from these aspiration levels are mini-
mized as a preferred solution. An objective function jointly with
an aspiration level is referred to as a goal. Based on the GP method,
model (2) can be converted into the following non-linear model for
identifying a set of common weights (e.g., Davoodi & Zhiani Rezai,
2012):

min
Xn

j¼1

ðu�j þuþj Þ

s:t:

Ps
r¼1uryrjPm
i¼1v ixij

þu�j �uþj ¼ Aj; 8j; ð3aÞ
Ps

r¼1uryrjPm
i¼1v ixij

6 1; 8j; ð3bÞ

u�j ;u
þ
j P 0;ur; v i P e; 8j; r; i:

ð3Þ

where Aj, j = 1, . . .,n, presents the goal of the jth objective function
and u�j and uþj are the under-achievement (so-called negative devi-
ation) and over-achievement (so-called positive deviation) of the jth
goal, respectively. Aj is set to unity in model (3) since in the conven-
tional DEA models, each DMU desires to maximize the efficiency
score.

In fact, the deviational variables u�j and uþj helps the jth objec-
tive function,

Ps
r¼1uryrj=

Pm
i¼1v ixij, to approach its goal (Aj = 1).

Given constraint (3b), the positive deviational variables uþj cannot
take the positive value in the constraint (3a) (i.e., uþj ¼ 0). In such
case, the constraints (3b) becomes redundant and the constraint
(3a) can be rewritten as

Xs

r¼1

uryrj þu�j
Xm

i¼1

v ixij

 !
¼
Xm

i¼1

v ixij; 8j;

We cannot attain the linear programming problem from model (3)
by using the above non-linear constraints. To linearize the solving
model, we take into account the concept of the GP method to pro-
pose a new model. Consider the constraints

Ps
r¼1uryrj=

Pm
i¼1v ixij 6 1

where Aj = 1 in model (2). In order to achieve the goal of DMUj

(unity value for the efficiency score), fraction
Ps

r¼1uryrj=
Pm

i¼1v ixij

must be increased by the numerator increasing and/or the denom-
inator decreasing. To implement this, the DMU must minimize the
sum of the total virtual gaps to the benchmarking frontier by adding

uþj to
Ps

r¼1uryrj and taking u�j away from
Pm

i¼1v ixij. Consequently,
the MOFP model (2) can be converted to the following model:

min
Xn

j¼1

ðu�j þuþj Þ

s:t:

Ps
r¼1uryrj þuþjPm
i¼1v ixij �u�j

¼ 1; 8j; ð4aÞ
Ps

r¼1uryrjPm
i¼1v ixij

6 1; 8j; ð4bÞ

u�j ;u
þ
j P 0;ur ;v i P e; 8j; r; i:

ð4Þ

Obviously the constraints (4b) are redundant in the presence of (4a)
and can be omitted from model (4). We obtain the linear program-
ming model (5) by converting the proportional form of constraints
in (4) to the linear forms using the cross-multiplication method.

min
Xn

j¼1

ðu�j þuþj Þ

s:t:
Xs

r¼1

uryrj �
Xm

i¼1

v ixij þu�j þuþj ¼ 0; 8j;

u�j ;u
þ
j P 0;ur ;v i P e; 8j; r; i:

ð5Þ

The above model can be simplified to the following linear program-
ming by substitution u�j þuþj with uj:

min
Xn

j¼1

uj

s:t:
Xs

r¼1

uryrj �
Xm

i¼1

v ixij þuj ¼ 0; 8j;

uj P 0;ur; v i P e; 8j; r; i:

ð6Þ

Definition 1. DMUj, j = 1, . . .,n, is non-dominated if and only if
u�j ¼ 0; j ¼ 1; . . . ;n, in model (6).

Then if we let ðu�r ;v�i ;u�j Þ; 8r; i; j are the optimal solutions of
model (6), the efficiency scores of DMUj, j = 1, . . .,n, can be obtained
as:

h�j ¼
Ps

r¼1u�r yrjPm
i¼1v�i xij

¼ 1�
u�jPm

i¼1v�i xij
; 8j ð7Þ

Definition 2. DMUj, j = 1, . . .,n, is non-dominated if and only if
h�j ¼ 1; j ¼ 1; . . . ;n; in Eq. (7).

3. The proposed model for resource allocation and target
setting

In the real life problems, there are some centralized situations
that the decision maker desires (or is obliged) to allocate additional
resources to the inputs of the DMUs and to define a target for the
output-level of the DMUs. For instance, assume that management
of a chain store makes a decision to allocate a new product with
a scarce capacity between the present stores, and management
expects to attain certain revenue with regard to selling the new
product. Therefore, the assigned additional products to each
DMU can be treated as an additional input resource and the
imposed revenue level through the DMUs can be considered as
an additional output. It is obvious that management of a chain
store is increasingly eager to obtain 100% efficiency score. There-
fore, the major aim is to identify the resource allocation and setting
output target such that all DMUs become efficient. Note also the
important centralized perspective in our example, the manager
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for the DMUs has no short-term interest in starving DMUs that
may have been temporarily inefficient in the last period, nor con-
gesting those DMUs that may have been on the frontier last period.
Under mild assumptions regarding dual output and input prices,
the manager is more interested to assure that all units are repre-
sented at the frontier. However, since the evaluation is centralized
and the units are assumed homogenous, there is no rationale for
using endogenous individual weights in the DEA evaluation. In this
section, we propose a new model for allocating resources and set-
ting output targets adequately.

Let us consider a system (organization) consisting of n indepen-
dent DMUs under the evaluation process that each DMUj,
j = 1, . . ., n, use m inputs, xij 2 Rþ; ði ¼ 1; . . . ;m; j ¼ 1; . . . ; nÞ to pro-
duce s outputs, yrj 2 Rþ; ðr ¼ 1; . . . ; s; j ¼ 1; . . . ;nÞ. In this central-
ized system, we suppose that the organization has q additional
resources Fk e R + , k = 1, . . ., q and it wants to allocate these re-
sources to each DMU. Accordingly, the organization expects to
achieve p fixed outputs, Gw e R + , w = 1, . . ., p, as targets set for
each DMU. The non-negative variables �f kj and �gwj present the allo-
cated inputs and allocated outputs to DMUj, respectively. Thus, the
relations

Pn
j¼1

�f kj ¼ Fk;8k and
Pn

j¼1�gwj ¼ Gw;8w, must be held.
Hence, we create the following system:Ps

r¼1uryrj þ
Pp

w¼1usþw�gwjPm
i¼1v ixij þ

Pq
k¼1vmþk

�f kj

¼ 1; 8j; ð8aÞ

Xn

j¼1

�f kj ¼ Fk; 8k; ð8bÞ

Xn

j¼1

�gwj ¼ Gw; 8w; ð8cÞ

ur;usþw;v i; vmþk P e; �f kj; �gwj P 0; 8r; i; k;w; j: ð8dÞ

ð8Þ

In the above system, constraints (8a) guarantees that the efficiency
score of each DMU reaches to unity based on defining extra inputs
for the resources allocation and an extra outputs for target setting.
The constraints (8b) and (8c) state that the sum of the resources
allocation and target setting are equal to Fk and Gw, respectively.
Due to the non-linearity of (8) we apply the following alteration
variables

usþw�gwj ¼ gwj;

vmþk
�f kj ¼ fkj:

so that the system (8) results in the following system:Ps
r¼1uryrj þ

Pp
w¼1gwjPm

i¼1v ixij þ
Pq

k¼1fkj
¼ 1; 8j; ð9aÞ

Xn

j¼1

fkj ¼ vmþkFk; 8k; ð9bÞ

Xn

j¼1

gwj ¼ usþwGw; 8w; ð9cÞ

ur;usþw;v i; vmþk P e; fkj; gwj P 0; 8r; i; k;w; j: ð9dÞ

ð9Þ

To take into account the effects of the present input and output val-
ues in allocating resources and setting output targets, we define kj

and lj multipliers assigned to all additional inputs and all additional
outputs for a certain DMU, respectively, as ð1=mÞ

Pm
i¼1 xij=

Pn
t¼1xit

� �
;

and, ð1=sÞ
Ps

r¼1 yrj=
Pn

t¼1yrt

� �
; where

Pn
j¼1kj ¼

Pn
j¼1lj ¼ 1 (j = 1, . . .,

n). Therefore, kjFk and ljGw can be utilized for the input allocation
and the output setting of jth the DMU, respectively. In the literature,
there are several methods to solve system (9) such as Gauss-Jordan,
Gaussian elimination (e.g., see Ralston & Rabinowitz, 1978).

We can show that constraints (9a) always are feasible by con-
sidering the effect of the multipliers kj and lj in the inputs and out-
puts, respectively. Notice that, similar to (9a), all DMUs will be
efficient simultaneously. When we use the multipliers kj and lj,
it is possible that infeasibility occurs for system (9). Hence, (9) can-
not be solved via the conventional methods. Consequently, we de-
fine extra variables for a linear programming model based on the
GP concept. In detail, we use the negative and positive deviational
variables for fkj and gwj denoted by ða�kj;a

þ
kjÞ and ðb�wj; b

þ
wjÞ, to reach

the goals vmþkkjFk and us+wljGw respectively, in order to assure fea-
sibility of constraints (9b) and (9c). In other word, our main con-
cern is to have a feasible system for (9) in the presence of the
multipliers kj and lj. Note here that the multipliers kj and lj never
influence (9a) while constraints (9b) and (9c) might be infeasible.
Rationally speaking, we minimize the sum of the defined devia-
tions to achieve our goal, viz.

min
Xn

j¼1

Xq

k¼1

ða�kjþaþkjÞþ
Xp

w¼1

ðb�wjþbþwjÞ
 !

s:t:

Ps
r¼1uryrjþ

Pp
w¼1gwjPm

i¼1v ixijþ
Pq

k¼1fkj
¼1; 8j;

f kjþa�kj�aþkj¼vmþkkjFk; 8k;j;

gwjþb�wj�bþwj¼usþwljGw; 8w;j;

Xn

j¼1

fkj¼vmþkFk; 8k;

Xn

j¼1

gwj¼usþwGw; 8w;

ur;usþw;v i;vmþk Pe; fkj;gwj;a�kj;a
þ
kj;b

�
wj;b

þ
wj P0; 8r;i;k;w;j:

ð10Þ

The above model is fractional programming problem and it can be
converted to the linear programming problem using the cross-mul-
tiplication method as follows:

min
Xn

j¼1

Xq

k¼1

ða�kjþaþkjÞþ
Xp

w¼1

ðb�wjþbþwjÞ
 !

s:t:
Xs

r¼1

uryrjþ
Xp

w¼1

gwj�
Xm

i¼1

v ixijþ
Xq

k¼1

fkj

 !
¼0; 8j;

f kjþa�kj�aþkj¼vmþkkjFk; 8k;j;

gwjþb�wj�bþwj¼usþwljGw; 8w;j;

Xn

j¼1

fkj¼vmþkFk; 8k;

Xn

j¼1

gwj¼usþwGw; 8w;

ur;usþw;v i;vmþk Pe; fkj;gwj;a�kj;a
þ
kj;b

�
wj;b

þ
wj P0; 8r;i;k;w;j:

ð11Þ

Theorem 1. There always exists a feasible solution to model (11).

Proof. Obviously, we have the following feasible solution to (11):

akj ¼
Xs

r¼1

uryrj; 8k; j; bwj ¼
Xm

i¼1

v ixij; 8w; j;

gwj ¼ bwj; 8w; j; f kj ¼ akj; 8k; j;
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ur ¼ e; 8r; usþw ¼
Pn

j¼1gwj

Gw
; 8w;

v i ¼ e; 8i; vmþk ¼
Pn

j¼1fkj

Fk
; 8k;

a�kj ¼
0; fkj P vmþkkjFk; 8k;8j

vmþkkjFk � fkj; fkj < vmþkkjFk; 8k;8j

( )
;

aþkj ¼
fkj � vmþkkjFk; fkj P vmþkkjFk; 8k;8j

0; fkj < vmþkkjFk; 8k;8j

( )
;

b�wj ¼
0; gwj P usþwljGw; 8w;8j

usþwljGw � gwj; gwj < usþwljGw; 8w;8j

( )
;

bþwj ¼
gwj � usþwljGw; gwj P usþwljGw; 8w;8j

0; gwj < usþwljGw; 8w;8j

( )
:

Therefore, the proof is accomplished. h

Notice that Theorem 1 guarantees that all DMUs will be effi-
cient with regard to the cost allocation and target setting.

Corollary. The optimal solutions from model (11) are non-nega-
tive and bounded.

After obtaining the optimal solution ðu�;v�; f �j ; g�j ;a��j ;

aþ�j ; b��j ; bþ�j Þ from model (11), we set f �kj; g
�
wj;v�mþk and u�sþw in the

equations usþw�gwj ¼ gwj and vmþk
�f kj ¼ fkj to identify the optimal

resource allocation values, �f �kj, and target setting values, �g�wj. As
mentioned earlier we take into account the resource allocation
and target setting values as additional inputs and additional out-
puts, respectively. Therefore, model (2) enables us to examine
the efficiency of DMUs after allocating resources and setting out-
put targets. In the presence of these additional inputs and outputs,
model (2) can be converted to the following model:

The following proposition shows the relation between models (2)
and (12).

We summarize the proposed procedure in this study using the
following three structured successive phases (see Fig. 1):

Phase 1: Calculate the optimal multipliers using the CSW model
(6) consisting of n constraints and n + m + s variables. Then Eq.
(7) is used to obtain the efficiency score of each DMU.
Phase 2: Allocate q resources and set p targets for DMUs simul-
taneously using model (11) in order to receive the efficient
DMUs. Model (11) consists of n(p + q + 1) + p + q constraints
and n(3q + 3p) + m + s + p + q non-negative and positive
variables.
Phase 3: Re-calculate the optimal multipliers using model (6)
with considering q additional inputs and p additional outputs
derived from the previous phase. We note that according to
Theorem 1, all DMUs are technically efficient after allocation.

4. Numerical examples

In this section, we use two numerical examples to illustrate the
applicability and efficacy of the proposed method. We first con-
sider a hypothetical example proposed by Cook and Kress
(1999)1 for resource allocation followed by a second example from
Amirteimoori and Mohaghegh Tabar (2010) for simultaneous re-
source allocation and target setting.2 We make the comparison
between the proposed method and the respective original methods.

Phase 1 

Step 1.1 

Calculate the optimal multipliers using model (6)

Step 1.2 

Obtain the efficiencies of the DMUs using equation (7)

Phase 3 

Step 3.1 

Re-calculate the optimal multipliers using model (6)

Step 3.2 

Re-obtain the efficiencies of the DMUs using equation (7) 

Phase 2 

Allocate the resources and set the targets to DMUs using 
model (11)

Fig. 1. The proposed framework.

max F ¼
Ps

r¼1uryr1 þ
Pp

w¼1usþw�gw1Pm
i¼1v ixi1 þ

Pq
k¼1vmþk

�f k1
;

Ps
r¼1uryr2 þ

Pp
w¼1usþw�gw2Pm

i¼1v ixi2 þ
Pq

k¼1vmþk
�f k2

; . . . ;

Ps
r¼1uryrn þ

Pp
w¼1usþw�gwnPm

i¼1v ixin þ
Pq

k¼1vmþk
�f kn

( )

s:t:

Ps
r¼1uryrj þ

Pp
w¼1usþw�gwjPm

i¼1v ixij þ
Pq

k¼1vmþk
�f kj

6 1; 8j;

ur ;usþw;v i;vmþk P e; �f kj; �gwj P 0; 8r; i; k;w; j:

ð12Þ

1 Also used in Beasley (2003) and Cook and Zhu (2005).
2 The method of Amirteimoori and Mohaghegh Tabar (2010) is hereafter called ‘‘AM

method’’.
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4.1. Example 1

In this numerical example, there are 12 DMUs, three inputs
{x1,x2,x3} and two outputs {y1,y2} as presented in Table 1. Similar
to Beasley (2003) and Cook and Zhu (2005) we assume that a fixed
resource of 100 units is to be allocating among the DMUs.

Cook and Kress (1999) allocated the fixed cost between the
DMUs in the two phases according to two principles; invariance
and pareto-minimality. In the first phase, Cook and Kress (1999)
applied the output-oriented (input-oriented) CRS model to obtain
the technical efficiency of the DMUs. The 7th column of Table 1
shows the (input-oriented) efficiency score, yielding five techni-
cally input-efficient DMUs; 4, 5, 8, 9, 12. In the second phase, they
allocated the fixed resource to all units where the efficiency of
DMUs remains unchanged after resource allocation as presented
in the 2nd column of Table 2. To address the non-uniqueness prob-
lem for allocated resources in the presence of multiple efficient
units, they used cone-ratio constraints. In addition, their resource
allocation method was only dependent on the input, and the out-
put values do not influence in determining the amount of alloca-
tion (Beasley, 2003, p.208). For example, as shown in Table 2, the
cost allocation of Cook and Kress (1999) for DMU9 and DMU11

are 7.31 with identical inputs and different outputs. Note also that
the fixed resource of 100 units is precisely allocated between the
DMUs by Beasley (2003) and the proposed method in this study
(see the last row of Table 2).

To deal with the problem of non-uniqueness in Cook and Kress
(1999), Beasley (2003) created the following four-step DEA proce-
dure for allocating fixed resources:

1. Finding cross-efficiency (the maximum average DMU efficiency).
2. Identifying the flexibility associated with fixed resource alloca-

tion for each DMU.

3. Minimizing pmax � pmin where pmax and pmin are defined as the
maximum and minimum proportions, over and above the min-
imum fixed resource for each DMU.

4. Investigating whether there is any flexibility remaining with
regard to the fixed resource allocation for each DMU.

5. Determining whether there is a unique fixed resource
allocation.

Cook and Zhu (2005) extended the method of Cook and Kress
(1999) by proposing a two-phase approach. The first phase in-
volves three following steps:

1. This step is the same as the first phase of Cook and Kress (1999)
(see the 7th column of Table 1).

2. Classifying the DMUs in the two classes; [technically] efficient
and inefficient DMUs.

3. Determining the inefficiency values for all inefficient units.

In the second phase, Cook and Zhu (2005) allocated the fixed re-
source to DMUs based on step 3 while keeping the classification of
step 2 as well as preserving the efficiency scores of step 1. The as-
signed fixed resource of Cook and Zhu (2005) is presented in the
4th column of Table 2. In fact, Cook and Zhu (2005)’s cost allocation
merely provides one feasible solution and not necessary the opti-
mal solution.

We now apply the proposed three-phase procedure in this
study (see Fig. 1) to allocate a fixed cost of 100 units across 12
DMUs. The first phase calculates the efficiency score of DMUs using
model (6) and Eq. (7) as shown in the last column of Table 1. The
second phase allocates resources and sets targets, simultaneously,
for DMUs by means of model (11). This numerical example is a spe-
cial case of the proposed model because of absence of target setting
(i.e., Gw = 0). The result of the resource allocation is reported in the
last column of Table 2. The last phase re-evaluates the efficiency of
DMUs after allocation using model (6) only to obtain the optimal
multipliers, since the efficiency is assured by Theorem 1. In Table 2,
DMU9 receives the highest resource allocation, 16.330, with our
method compared to others because DMU9 is efficient before allo-
cating cost and this is the reason why it is allocated a much higher
fixed cost allocation. Similarly, in our method DMU7 and DMU11 re-
ceives the lowest resource allocation, 0, since these units exhibit
the worst performance in the production set.

The results of Beasley (2003)’s method presented in the 3rd col-
umn of Table 2, reveal the similarity of resource allocation of
DMU7, DMU9 and DMU11 with our method. In other words,
DMU9 takes the highest amount of resource allocation (i.e.,
15.11) while DMU7 and DMU11 take the lowest amounts of re-
source allocation (i.e., 5.090 and 1.580, respectively). Indeed, the
Spearman rank-order correlation between the results of Beasley
(2003) and our method is 0.

However, in Cook and Zhu’s (2005) method DMU4, DMU5, DMU8

and DMU12 are efficient but receive no resource allocation at all.
Moreover, in Cook and Zhu, DMU11 receives the highest resource allo-
cation in the set, although it is by far the weakest performer with an
efficiency score of 0.333 in Farrell radial input-oriented efficiency.
The allocation result of Cook and Zhu (2005) differs substantially
from those of the other three approaches (Spearman rank-order coef-
ficient 0.206, t = 0.67). Note that Cook and Zhu (2005) stated that
Cook and Kress (1999) and Beasley (2003) are two different ap-
proaches because of using different underlying assumptions.

4.2. Example 2

This example includes 20 DMUs with three inputs and three
outputs as reported in (Amirteimoori & Mohaghegh Tabar, 2010,
Table 2, p. 3038).

Table 1
Input and output data and efficiency scores for 12 DMUs (Cook & Kress, 1999).

DMU x1 x2 x3 y1 y2 Efficiency before allocation

Cook and Kress
(1999)

Proposed
method

1 350 39 9 67 751 0.757 0.649
2 298 26 8 73 611 0.926 0.641
3 422 31 7 75 584 0.746 0.439
4 281 16 9 70 665 1.000 0.736
5 301 16 6 75 445 1.000 0.488
6 360 29 17 83 1070 0.961 0.892
7 540 18 10 72 457 0.862 0.279
8 276 33 5 78 590 1.000 0.672
9 323 25 5 75 1074 1.000 1.000

10 444 64 6 74 1072 0.833 0.713
11 323 25 5 25 350 0.333 0.326
12 444 64 6 104 1199 1.000 0.810

Table 2
Resulting resource allocation for the Cook and Kress (1999) problem.

DMU Cook and Kress Beasley Cook and Zhu Proposed method

1 14.520 6.780 11.220 8.199
2 6.740 7.210 0.000 7.462
3 9.320 6.830 16.950 4.284
4 5.600 8.470 0.000 9.301
5 5.790 7.080 0.000 4.807
6 8.150 10.060 15.430 15.370
7 8.860 5.090 0.000 0.000
8 6.260 7.740 0.000 7.339
9 7.310 15.110 17.620 16.330

10 10.080 10.080 21.150 11.598
11 7.310 1.580 17.620 0.000
12 10.080 13.970 0.000 15.310
Sum 100.020 100.000 99.990 100.000
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We assume that a central decision maker allocates 175 resource
[units] to the DMUs and subsequently imposes 620 units as an out-
put target (i.e., F1 = 175 and G1 = 620). The 2nd and 4th columns of
Table 3 show the efficiency scores of the AM method prior to and
after resource allocation, respectively, while the 6th and 8th col-
umns present the amounts of the resource and output targets allo-
cated among the DMUs. After resource and target allocation in the
AM method, 20% of DMUs record efficiency improvements while
the efficiency scores of 75% of DMUs stay unchanged.

According to the proposed framework, we first calculate the
efficiencies of the DMUs using model (6) and Eq. (7) presented in
the 3rd column of Table 3. We then use the proposed model (11)
to obtain the optimal resource allocation as well as setting targets
for all units. The results are presented in the 7th and 9th columns
of Table 3.

As shown in Table 3, the �f 1j and �g1j, j = 1, . . ., 20 denote the new
allocated input and output for each DMU, respectively. All DMUs
become efficient if we re-evaluate the DMUs via model (6) and
Eq. (7) in the presence of �f 1j and �g1j as an extra input and output.
As a result, this example shows that the proposed model enables
us to achieve our goal which is to receive the efficient DMUs after
incorporating the resource allocation and setting output target.
Note here that in Table 3, the values of some �f 1j are zero because
these DMUs are at the efficient frontier without additional allo-
cated resources.

We here compare the proposed framework in this study with
the AM method. The procedure of the AM method can be summa-
rized in the three following phases:

� Phase 1. The multiplier CRS model (1) with n + 1 constraints and
m + s variables is applied n times to determine the technical
input-efficiency of n DMUs.
� Phase 2. According to the authors’ claim, a fixed resource is allo-

cated and a fixed output target is set to receive the efficient
DMUs. However, the AM method was not able to allocate the
fixed input and output adequately to get the efficient DMUs
(see Amirteimoori & Mohaghegh Tabar, 2010, Table 2, p.
3038). The AM model includes 6n + 2 constraints and
7n + m + s + 2 variables including 2n + m + s + 2 non-negative
variables and 5n free variables.

� Phase 3. The AM method re-evaluates the efficiencies of DMUs
by using n times of the multiplier CRS model with respect to
the new assigned input and output attained from preceding
stage. In this stage, each DMU involves m + 1 inputs and s + 1
outputs which have one more input and output compared with
stage 1.

Similarly, the procedure proposed in this paper consists of the
three phases (see Fig. 1) where there are q resources and p targets
for allocation. The first phase of the proposed method solves
(n � 1) linear programming models fewer in comparison with the
AM method.

For comparison with the second phase of the AM method, it
needs q = 1 and p = 1 substitutes in order to have one fixed re-
source and one fixed output target. As a result, our proposed model
contains 3n + 2 constraints and 6n + m + s + 2 variables and it in-
cludes fewer constraints and variables compared to the AM meth-
od. On the basis of Theorem 1, the last phase of the proposed
method can be omitted while the AM method requires the solution
of n linear programming models.

In brief, the proposed framework in this paper is able to allocate
q resources and set p targets simultaneously with less complexity
and higher efficacy3 than the AM method.

5. Concluding remarks and future research directions

The intuition behind the two concepts brought together in this
paper is easy to understand when taking a managerial perspective
on efficiency evaluation.

First, whereas the cautious paradigm in non-parametric frontier
analysis prescribes the use of individual endogenous dual weights
for the evaluation, this makes little sense in an applied setting un-
der a common management. Relative prices and values of inputs
and outputs may be unknown to the manager, but clearly not devi-
ating widely between the units under evaluation. To address this

Table 3
Resulting efficiency, resource allocation and target setting of the AM method and the proposed method.

DMUj Efficiency before allocation Efficiency after allocation Resource allocation ð�f 1jÞ Target setting ð�g1jÞ

AM method Proposed method AM method Proposed method AM method Proposed method AM method Proposed method

1 1.000 0.796 1.000 1.000 13 6.118 28 28.970
2 0.711 0.675 0.711 1.000 4 0.000 20 23.076
3 0.896 0.485 0.896 1.000 11 0.000 9 41.799
4 0.596 0.501 0.598 1.000 7 0.000 9 29.145
5 1.000 0.478 1.000 1.000 11 0.000 6 28.825
6 1.000 1.000 1.000 1.000 0 4.364 21 0.000
7 0.704 0.597 0.704 1.000 11 0.000 6 22.133
8 1.000 0.940 1.000 1.000 0 3.202 14 13.878
9 1.000 1.000 1.000 1.000 0 4.063 22 14.984

10 0.523 0.282 0.530 1.000 10 0.000 5 21.509
11 0.668 0.480 0.776 1.000 9 0.000 27 52.552
12 1.000 0.748 1.000 1.000 0 0.000 25 20.855
13 0.958 0.910 1.000 1.000 0 6.099 22 11.018
14 0.994 0.562 1.000 1.000 0 0.000 27 32.011
15 1.000 1.000 1.000 1.000 6 12.591 61 51.634
16 1.000 1.000 1.000 1.000 18 119.404 82 0.000
17 0.942 0.793 0.951 1.000 34 0.000 72 67.222
18 1.000 0.757 1.000 1.000 6 0.000 56 65.325
19 1.000 0.926 1.000 1.000 13 19.159 68 62.655
20 0.891 0.809 0.891 1.000 21 0.000 39 32.409

Sum 174 175 619 620

3 Furthermore, it is important to note here that Amirteimoori and Mohaghegh
Tabar (2010, p. 3039) determined the results of the example using the integer-valued
DEA of Lozano and Villa (2006) while in their paper a standard DEA formulation was
presented for resource allocation and target setting.
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issue, we apply a common weights approach, deriving endogenous
common dual weights for all units. Using an approach equivalent
to goal programming, the problems of sub-dimensionality and
computational complexity are resolved.

Second, a manager may employ an incentive system to promote
efficiency ex ante, but organizational budgeting (and day-to-day
management) is all about concurrent resource allocation and tar-
get setting for the plants, groups or departments under his influ-
ence. Some earlier approaches have employed concepts based on
efficiency invariance, i.e. the resource allocation should not change
the previous efficiency. We argue that the manager will explicitly
violate this principle for reasons of joint maximization of system
performance and incentive provision to the individual units. In
organizations with layers of bureaucracy, the allocation of resources
and associated budgets are often important elements in the manage-
rial utility function, career development and motivation. A counterin-
tuitive resource allocation, depriving efficient units of resources may,
in an applied setting, perhaps achieve static efficiency at the expense
of dynamic efficiency. The numerical results from the two published
examples clearly illustrate these two points, which yet have to be
confirmed from a behavioral viewpoint.

In short, the main contributions of the paper are fourfold: (1)
we develop the common-weights DEA method to deal with total
weights flexibility in DEA; (2) we propose an alternative mathe-
matical model to allocate the fixed resources to the units along
with setting the expected common increase of the targets to the
units in a fair way; (3) the optimal solution of the proposed model
always assigns an efficiency score of unity to all DMUs; (4) we
compare the proposed framework with the present methods in
the literature.

The approach in this paper contributes to a field where rich
opportunities for modeling are opened in terms of e.g. multi-stage
evaluation in techno-economic systems such as supply chains.
Here, the current assumption about a single omniscient decision-
maker must be modified, giving raise to interesting interaction be-
tween internal resource allocation and external target setting. It is
plausible that the efficient formulation in this paper may be useful
to model these multi-stage systems without exploding in complex-
ity. Other issues concern extensions to dynamic settings to pursue
consistent allocation schemes over time, using dynamic decompo-
sitions. Finally, the production technology may also be refined to a
general case including categorical, environmental, integer-valued
and interval data for the input and output parameters.
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