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Abstract

In this paper we test for autoregressive unit roots in univariate time

series with generalized autoregressive conditionally heteroscedastic er-

rors (GARCH(1,1) errors) using a spectral variance decomposition

method based on the discrete wavelet transform. Results from using

the wavelet variance ratio tests on filtered time series are compared to

those from tests on the unfiltered series using four widely used unit root

tests namely; the Augumented Dickey-Fuller (ADF) test, the Phillips-

Perron (PP) test, and the two Elliot, Rothenberg and Stock (ERS)

unit root tests i.e Piont-optimal and DF-GLS tests. Monte Carlo sim-

ulations show that, for finite sample sizes, the wavelet based methods

show better performance than the four named tests in addressing the

problem of over-sizing, and have size-adjusted power within the range

of that of the other tests, in the presence of GARCH(1,1) errors.
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1 Introduction

Many economic and financial time series have conditional variances that

change over time. Unit root tests done on such time series are known to suffer

from over-sizing and power deterioration. Kim and Schmidt (1993), Cook

(2006) and Sjölander (2008) among others, show that the Dickey-Fuller tests

(Dickey and Fuller; 1979) suffer from size distortion, particularly for finite

sample sizes in the presence of autoregressive conditional heteroscedasticity

(ARCH) Engle (1982) or Generalized ARCH (GARCH) Bollerslev (1986).

While the asymptotic distributions of the Dickey-Fuller test statistics are

unchanged by the presence of GARCH type errors (Pantula; 1988; Wang

and Mao; 2008), over-sizing remains a problem in empirically relevant sample

sizes, the extent of which depends on the strength of the (G)ARCH effects

(Kim and Schmidt op. cit.). Thus, there is an opportunity to find methods

that can reconcile the actual and nominal test sizes when using small sample

sizes.

Several methods have been suggested to get around the problem of over-

sizing in finite samples. However, most studies have not used the full range

of sample sizes and GARCH processes that can realistically be encountered

by the data analyst. Two exceptions are Cook (op. cit) who used 4 sample

sizes and seven different GARCH(1,1) processes to compare the rejection

frequencies of the original Dickey-Fuller test to 5 modified versions of the

test, and Sjölander (op. cit.) who used 15 different GARCH (1, 1) processes

and 5 sample sizes in a Monte Carlo study to compare his ADF-BEST test

to 8 of the most commonly occurring unit root tests for size retention and

power.
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One approach to improve the size retention of the Dickey-Fuller test is to

use the heteroscedisity consistent standard errors of White (1980), or one

of its variations e.g. MacKinnon and White (1985), Davidson and MacKin-

non (1993) and Cribari-Neto (2004). Heteroscedasicity consistent standard

errors have been used by Andrews and Guggenberger (2011) to construct

confidence intervals with asymptotically correct sizes for near unit root and

unit root processes with GARCH errors. Demetrescu (2010) showed that

while the small-sample distribution of the Augmented Dickey-Fuller and

Dickey-Fuller-White (Dickey-Fuller with robust standard errors) react sen-

sitively to the degree of persistence in the conditional variance, this is less

the case with simple combinations of the two tests. Long and Ervin (2000)

show that the Heteroscedasticity Consistent Covariance Matrix (HC3) esti-

mator is superior to the commonly used HC0 when used for small sample

sizes (N < 250) and Cribari-Neto (op. cit.) further modified the HC3 es-

timator and shows that the modification, the HC4 estimator, gives better

results for small sample sizes.

An improvement on using robust standard errors alone has been to com-

bine them with the Recursive Mean or trend adjustment of So and Shin

(1999). Using the Dickey-Fuller test, the robust standard error induces a

slight under-sizing while the recursive mean method tends to over-size. A

wighted combination of the two Dickey-Fuller test statistics results in a test

with empirical size closer to the nominal size can be obtained (Patterson;

2012, p. 516).

Unit root tests using the Maximum Likelihood (ML) estimation of the

AR(p)-GARCH(p, q) model have been considered by Ling and Li (1998), Li

et al. (2002), Ling and Li (2003) and Ling et al. (2003), among others. Seo
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(1999) suggested a ML based test which estimates the autoregressive unit

root and the GARCH parameters jointly. However, the ML based tests do

not always perform better than the Dickey-Fuller tests. Charles and Darné

(2008) show that under the conditions that 0.8 6 (α1 +γ1) < 1 and γ1 > α1

(α1 and γ1 are parameters of the GARCH(1,1) process and will be discussed

later in the text), the empirical size and power properties of the ML test due

to Seo (op. cit), for example, do not provide improvements on the standard

Dickey-Fuller test statistics.

Sjölander (op. cit.) used a 3 step procedure to first estimate the GARCH

risk under the uncertainty of mean equation stationarity in a reliable way,

and then perform the unit root test using the Dickey-Fuller test. Monte

Carlo simulations showed that the test introduced by Sjölander (op. cit.),

called the ADF-BEST test, is unbiased for size and has better power than

8 of the most commonly used unit root tests in the presence of station-

ary GARCH(1,1) errors. The Monte Carlo study was extensive; using 15

GARCH(1,1) error processes, 12 different AR parameters for the mean equa-

tion, and 5 sample sizes ranging from 50 to 5000. The Design thus covered

GARCH(1,1) processes that have very weak to very strong volatility and

persistence in the conditional variance as well as near degenerate cases. The

ADF-BEST unit root test, however, requires prior knowledge of the GARCH

process i.e. it is a multi-step procedure that requires knowledge or estima-

tion of GARCH risk.

Li and Shukur (2011) used the wavelet filter to remove the highest frequency

components from the time series prior to applying the Dickey-Fuller test

on the filtered data. For their method, the scaling coefficients from the

wavelet analysis are tested for unit roots in place of the original series.
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The asymptotic distribution of the Dickey-Fuller test statistic is shown to

be the same as that of the Dickey-Fuller test on the original data with

independently distributed errors. Monte Carlo simulations show that there

is less size distortion using the wavelet improved method.

The test described in this paper filters the time series from the high fre-

quency components using the wavelet low-pass filter in a way similar to that

of Li and Shukur (op. cit.) i.e. the input series to the unit root test is

the unit scale scaling coefficients obtained from the first level wavelet analy-

sis. However, departing from the work cited earlier, which has mainly used

the Dickey-Fuller test with modifications, the unit root test is done in the

frequency domain using the wavelet variance ratio test introduced by Fan

and Gençay (2010). Monte Carlo simulations are performed to compare

the size retention and power of the variance ratio test on the filtered series

to four commonly used unit root tests (see section A.1) performed when

the GARCH behavior of the errors is neglected. The Monte Carlo study

also extends the design used by Sjölander (op. cit.) by including two ad-

dition conditional distributions (fat-tailed and leptokurtic), both commonly

encountered in financial economic data. The same 15 GARCH(1,1) error

processes used by Sjölander (op. cit.) and 5 different dyadic sample sizes

are used.

There are a multitude of candidate unit root tests that can be used for

comparison with the wavelet ratio tests. The four alternative tests used

here are well understood and extensively used by practitioners due to their

accessibility. They also provide a good baseline for comparison in terms of

statistical power, with the tests on efficiently detrended data known to have

good power for finite samples, and the Augmented Dickey-Fuller test known
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to suffer from power deterioration.

It should be noted that the main goal of the method described here is not to

model the GARCH(1,1) process with prediction or forecasting in mind, but

to remove or minimize the effect of heteroscedasticity on the unit root test,

and reconcile the actual and nominal test sizes for empirically interesting

sample sizes.

The rest of this paper is organized as follows. Section 2 covers a short

introduction to the wavelet transform, Section 3 covers the methodology of

the wavelet variance ratio test for unit roots, Section 4 covers the Monte

Carlo design and data generating processes (DGPs), Section 5 presents the

main results in tabular, graphical and discussion format, and conclusions

are given in Section 6. The appendix gives tables of the test sizes for all

the data generatin processes (DGPs) considered, and a select set of figures

corresponding to tables that have been discussed in the text.

2 The wavelet transform

A wavelet is an oscillatory function which starts at zero, achieves its max-

imum amplitude, and then reverts to zero. When considered as a function

of time, as is the case in time series applications, it deviates from zero for

a finite duration. It therefore has a location where it reaches its maximum,

an oscillation period, and also a scale over which it grows and declines. The

wavelet function, ψλ,t (·), which is real valued and defined over the real axis,
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must satisfy the following two conditions:

∞∫
−∞

|ψ (t)|2 dt = 1 (2.1)

∞∫
−∞

ψ (t) dt = 0 (2.2)

The first condition implies that the function is ‘small’ as compared to a

sinusoidal function defined on R, for example, and the second condition

implies that it a ‘wave’, since it averages to zero.

Wavelets are indexed by the integer pair (λ, t). λ refers to the scale, which

is the length of the wavelet, and t, refers to the location of the wavelet on

the time axis.

The basic wavelet can be dilated (or compressed) and translated along the

time axis and matched with signal segments in order to determine and local-

ize the dominant or important frequencies. The wavelets which result from

the translations and dilations of the basic wavelet are given as:

ψλ,t (u) =
1√
λ
ψ

(
u− t
λ

)
(2.3)

For time series, which are sampled at discrete time points, the Discrete

Wavelet Transform (DWT) is used. The DWT linearly transforms the vector

y = [y0, y1, . . . , yT−1]
T of dimension T = 2J into a vector of dimension

T containing the DWT coefficients. The transformation, given by Wy,

outputs the vector of DWT coefficientsW = [W 1,W 2, . . . ,W J ,V J ]T . The

jth sub-vector from the partition, W j , contains T/2j wavelet coefficients

which are differences between weighted, adjacent, and localized averages,

and describe the changes at scale τj (τj ≡ 2j−1). V J is a length T/2J vector
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of scaling coefficients associated with averages on scale λJ (λj ≡ 2j). W is a

T ×T orthonormal transform matrix i.e. WTW = IT . The transformation

matrix W can be similarly partitioned with Wj being a T/2j × T matrix

related to changes at scale τj . Its rows are orthonormal vectors and are

constructed from the high-pass wavelet filter. The last element of W is VJ ,

a 1× T dimensional vector related to averaging at scale λJ .

The scaling coefficients capture low frequency components of the time series

(such as those due to unit root processes), while the wavelet coefficients

capture the high frequency fluctuations. Because the power spectrum of a

unit root process is characterized by a concentration of energy at the lower

frequency bands, the ratio between the energy of the scaling coefficients to

the total energy in a series forms the basis of the wavelet variance ratio

test.

The Haar wavelet is a symmetric and compactly supported wavelet of length

L = 2. Its wavelet (hl) and scaling (gl) filters are given by:

h0 =
1√
2

h1 = − 1√
2

g0 =
1√
2

g1 =
1√
2

(2.4)

The scaling filter {gl} is the ’quadrature mirror’ filter corresponding to {hl}

i.e g0 = −h1, and g1 = h0. The wavelet filter has the three properties of

summation to zero, unit energy and orthogonal to its even shifts, while the

scaling filter has the latter two properties.

Limitations of the Haar DWT in time series applications are the requirement

that the length of input vector be dyadic (2J), as well as not being invariant

to circular shifts in the series. Also, the short filter may not provide as

good band-pass properties as those of the longer and smoother filters. How-



This is a draft copy. Please do not reference without contacting the authors

ever, the Haar wavelet filter, because of its short length, is least affected by

boundary effects, is symmetric, has closed form expressions, and is easy to

understand and implement. For these reasons, we use the Haar DWT as one

of two wavelet functions in the wavelet variance ratio tests. For comparison

purposes, the lengths (sample sizes) of the simulated time series are dyadic,

even when the unit root tests are performed using tests that do not have

this restriction.

The Maximal Overlap DWT (MODWT1) is invariant to circular shifts in

the original time series, meaning that shifts in the series result in equiva-

lent shifts in the wavelet coefficients. It also has better resolution at lower

scales because it does not down-sample as the DWT does. However, this

comes at the cost of loss of orthogonality. The transform matrix W̃j is not

orthogonal, and as a result, smooths and details from the multiresolution

analysis (MRA)2 of the MODWT do not decompose the total variance on a

scale-by-scale basis in the way that the wavelet coefficients do, hence only

the wavelet and scaling coefficients will be used for the variance ratio test.

The MODWT wavelet and scaling filters are rescaled versions of the DWT

filters (see equations 2.4). The wavelet filter {h̃l} is related to its DWT

equivalent through h̃l ≡ hl
/√

2 and the scaling filter g̃l ≡ gl
/√

2. It follows

that for the scaling filter:

∑L−1

l=0
g̃l = 1

∑L−1

l=0
g̃2l =

1

2
and

∑∞

l=−∞
g̃lg̃l+2 = 0 (2.5)

1also called “undecimated DWT”, “stationary DWT”, “time-invariant DWT” and
“translation-invariant DWT”)

2The MRA of y expresses y as the sum of a constant vector SJ (smooth) and Dj

(details, j = 1 . . . , J) other vectors, each a time series related to variations of y at a given
scale (Percival and Walden; 2000, p. 64–65)
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Where L is the length of the filter.

The wavelet and scaling coefficients {W̃j,t} and {Ṽj,t} are given as (Percival

and Walden; 2000, Chapter 5):

W̃j,t =
∑L−1

l=0
h̃ol yt−l mod T Ṽj,t =

∑L−1

l=0
g̃ol yt−l mod T (2.6)

where {h̃oj,l} and {g̃oj,l} are filters obtained by periodizing {h̃j,l} and {g̃j,l}

to length T . The wavelet transform is an energy preserving transform. The

energy preservation (using the partial decomposition to level J0) is given

by:

‖y‖2 =
∑J0

j=1

∥∥∥W̃ j

∥∥∥2 +
∥∥∥Ṽ J0

∥∥∥2 (2.7)

with J0 < J .

This is an important property of the wavelet transform for unit root testing

because the wavelet ratio unit root test is based on the energy dis-balance

between the wavelet and scaling coefficients.

In this paper, the LA(8) or Least Asymmetric wavelet of length 8 is used be-

cause of its desirable band-pass properties. Detailed expositions on wavelet

filters and their band-pass properties can be found in the texts Percival and

Walden (2000) by and Gençay et al. (2001).

3 Methodology

3.1 Wavelet variance ratio unit root test

The wavelet variance ratio test has found use in unit root testing because

the wavelet variance decomposition of a time series makes it possible to
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determine the contribution to the total variation corresponding to changes

within each scale. When the contribution to the total variation from the

higher scales dominates that from the lower scales, the data generating pro-

cess is more likely to be a unit root process than a stationary process. Also,

because the wavelet transform can be formulated in terms of filters, there

is a direct relationship between scale and frequency. The DWT decomposes

the frequency interval [0, 1/2] such that, at scale τj , the wavelet filter is a

band-pass filter for the frequency interval [1/2j+1, 1/2j ]. In the presence of a

unit root, changes in the higher scales (lower frequencies) will be associated

with the smoother movements due to the unit root, and the energy balance

will be such that most of the energy will be in the low frequency bands. The

wavelet variance ratio test is therefore constructed as a ratio of the energy

of the scaling coefficients to the total energy of the data. Fan and Gençay

(2010) introduced the wavelet variance ratio test using the unit level wavelet

and scaling coefficients and base their test statistic on

ŜT,1 =

∑T/2
t=1 V

2
1,t∑T/2

t=1 V
2
1,t +

∑T/2
t=1 W

2
1,t

(3.1)

For a unit root process, the scaling coefficients will be non-stationary and

their energy at the finest level
∑T/2

t=1 V
2
1,t dominates that of the stationary

wavelet coefficients
∑T/2

t=1 W
2
1,t. The ratio of the variance of the scaling

coefficients to that of the series two will be close to unity. The asymptotic

distribution of the test statistic based on ŜT,1 has been derived by Fan

and Gençay (2010) who also show that under the null hypothesis of a unit

root

ŜT,1 =

∑T/2
t=1 V

2
1,t∑T/2

t=1 V
2
1,t +

∑T/2
t=1 W

2
1,t

= 1 + op(1) (3.2)
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and under the alternative hypothesis

ŜT,1 =
E(y2t + y2t+1)

2

E(y2t + y2t+1)
2 + E(y2t − y2t+1)

2 < 1 (3.3)

This result can be generalized to higher level decompositions (Fan and

Gençay; 2006), with the wavelet and scaling DWT coefficients computed

respectively from

Wj,t =
∑L(j)−1

l=0
hj,ly2jt+1−l Vj,t =

∑L(j)−1

l=0
gj,ly2jt+1−l (3.4)

where L(j) is the length of the level j wavelet filter.

The corresponding energy ratio on which a test statistic can based is there-

fore

ŜT,J =

∑T/2J−1
t=LJ

V 2
j,t∑T/2J−1

t=LJ
V 2

j,t +
∑J

j=1

(∑T/2J−1
t=Lj

W 2
j,t

) (3.5)

In this paper we make use of the variance ratio unit root test but instead

of the data {yt}, we consider using the unit level DWT (and MODWT)

scaling coefficients as the input vector; (cf. Li and Shukur; 2011) who apply

the Dickey-Fuller unit root test to the scaling coefficients. This does not

change the asymptotic properties of the test from that of ŜT,1 because under

the null hypothesis,
∑T/2J−1

t=LJ
V 2

j,t = Op(T
2) and each term of the inner

summation of the squared wavelet coefficients,
∑T/2J−1

t=LJ
W 2

j,t = Op(T ). As

a result,
∑J

j=1

(∑T/2J−1
t=Lj

W 2
j,t

)
= Op(T ) holds even when (for the purposes

of filtering the high frequency components) the unit level wavelet coefficients

are set to zero i.e
∑T/2

t=L1
W 2

1,t = 0. L1 is the number of boundary level

dependent coefficients at the unit level.
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It therefore holds that, under the null hypothesis,

∑T/2J−1
t=LJ

V 2
j,t∑T/2J−1

t=LJ
V 2

j,t +
∑J

j=2

(∑T/2J−1
t=Lj

W 2
j,t

) = 1 + op(1) (3.6)

and under the alternative,

∑T/2J−1
t=LJ

V 2
j,t∑T/2J−1

t=LJ
V 2

j,t +
∑J

j=2

(∑T/2J−1
t=Lj

W 2
j,t

) < 1 (3.7)

Intuitively, because the power spectrum of a unit root process is concen-

trated at the lowest frequencies (near zero frequencies), a test based on the

higher scale wavelet variance decompositions will not change the energy ra-

tio for large sample sizes. The energy of the scaling coefficients will always

dominate that of the wavelet coefficients, and the ratio will be close to 1

under the null hypothesis of unit root.

S̃, Ṽ and W̃ replace S, V and W in the case of the variance ratio test using

the Maximal Overlap DWT, and the test proceeds in a similar way to the

DWT case.

Using the scaling coefficients at first level as the input vector for unit root

testing restricts the frequency decomposition of {yt} to the bands f ∈ [0, 1/4]

because the unit level wavelet coefficients corresponding to f ∈ [1/4, 1/2] are

omitted. This has two consequences; firstly the test retains power against

alternatives that have considerable energy in frequencies closer to zero, such

as near integrated processes, and secondly it modifies the behavior of {yt}

with respect to the highest frequency band by dampening the effects of

volatility in the series. Setting the unit level wavelet coefficients to zero can

be considered the simplest wavelet thresholding method. Other thresholding
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methods have been used to smooth volatility effects e.g. (Gençay et al.; 2001,

p. 516) where five thresholding methods are applied to the classic dataset on

IBM daily returns studied in Box and Jenkins (1976). More on thresholding

procedures can be found in Nason (2008) and Gençay et al. (2001).

4 The Monte Carlo experiment

Monte Carlo simulation was used to compare the size retention and power

of the wavelet variance ratio unit root test to the ADF test (Dickey and

Fuller; 1981; Said and Dickey; 1984), the PP test (Phillips and Perron; 1988),

and the DF-GLS and Point Optimal tests of Eliott, Rothenburg and Stock

(Elliot et al.; 1996). The ADF and PP tests differ in the how they handle

serial correlation in the error terms. In order to compare each test with the

wavelet ratio test, a DGP having a higher order autoregressive process than

AR(1) has to be used to generate the simulated series. For this reason, the

DGP is an AR(2) process with a single unit root. Also, the GARCH (1,1)

model is used to generate the errors because it provides a more parsimonious

representation of possible higher order ARCH models.

4.1 The Data Generating Process (DGP)

The DGP for the AR(2)-GARCH(1,1) is specified as follows: yt = µt + zt

with the deterministic components specified as µt = µ+βt. For the purposes

of this study, an allowance is not made for a time trend and it follows that

µt = µ. The unit root dynamics are captured in the error term φ (L) zt = εt

with φ (L) =
(
1− φ1L− φ2L2

)
for the AR(2) process. Written with the

isolated unit root, (1− L) (1− ϕL) zt = εt and the DGP is therefore given
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by (1− ϕL) ∆yt = εt. The coefficients of the lag polynomial of the AR(2)

processes that are simulated are φ1 = 1.25 and φ2 = −0.25 so that the DGP

is (1− 0.25L) ∆yt = εt, and εt follows a stationary GARCH(1,1) process as

shown below

εt = utσt (4.1)

σ2t = α0 + α1ε
2
t−1 + γ1σ

2
t−1 (4.2)

σ2 =
α0

1− α1 − γ1
(4.3)

The scaled conditional error ut ∼ iid(0,1); σ2t and σ2 are the conditional and

unconditional variances respectively. Also, for σ2t to be positive, α0 > 0,

α1 > 0, and γ1 > 0. For the simulation we set α0 to be equal to (1−α1−γ1)

so that the unconditional variance is fixed at 1. The condition α0 > 0 is

required to avoid degeneracy of the unconditional variance and α1 + γ1 < 1

is required for finite unconditional variance.

A burn-in of 100 was used and the initial value for the unconditional variance

was set to 1. y0 was set to zero by subtracting y0 from each yt. For this

study, an allowance is made for a constant term but no time trend is included

in the specification of the deterministic terms. Testing using the variance

ratio test will therefore have to be done using the demeaned series {ỹt} with

ỹt ≡ (yt − µ) where µ is estimated by the sample mean µ̂ = T−1
∑T

t=1 yt.

This can be extended to allow for a constant term and time trend, but in

that case, the data will have to be demeaned and detrended using a prior

regression on a constant term and time trend, and the residuals tested for

the unit root.
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4.2 The Monte Carlo Design

Table 4.1 shows the factors that are varied together with their respective

ranges. The nominal size is 5% as per convention and its acceptance range is

the 95% confidence interval for the estimated proportion as used by Edgerton

and Shukur (1999).

CL = π̂ ± Φ−1(1− π̂)

√
π̂ (1− π̂)

N
(4.4)

where π̂ is the proportion of rejections of the null hypothesis and N is the

number of repetitions of the test.

For this study, N=10,000 and π̂=0.05. CL = [0.0457, 0.0543].

It is therefore expected that 1 in 20 simulations, each using 10,000 repeti-

tions, will result in spurious under- or over-sizing. 75 series are simulated

for each experimental setting so 1 in 15 results are expected to fall outside

the interval for an unbiased test. Three standardized conditional distribu-

tions are used; the standard Normal, the standardized t distribution with 4

degrees of freedom, and the Generalized Error Distribution (GED) Nelson

(1991) with the tail-thickness parameter ν equal to 1.5. The standardized

t and GED distributions used here have fat tails and are more typical of

financial applications than the normal distribution.

The ranges for α0, α1 and γ1 are replicated from the study by Sjölander

(2008) with justification given therein. Fifteen combinations of α0, α1 and

γ1 meet the constrains for positive conditional variance and unconditional

variance equal to 1. The generated series will have GARCH(1,1) errors that

can be considered to be representative of processes that are encountered in
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practice.

Table 4.1: Factors that vary for the different DGPs

Factor Symbol Design

Nominal size π0 0.05
Number of repetitions N 10 000
Number of observations T 64, 128, 256, 512, 1024
Dominant root3 α 0.8, 0.9, 0.95, 0.98, 0.99, 1
GARCH parameters α0 α0 = (1− α1 − γ1)

α1 0.005, 0.25, 0.50, 0.75, 0.99
γ1 0.005, 0.24, 0.49, 0.74, 0.99

Conditional distributions4 ut iid N(0,1)
iid GED(ν = 1.5)
iid tstd(4)

Wavelet function DWT Haar
MODWT LA(8)

The interpretation of the effects of the GARCH(1,1) process is that α1 rep-

resents the degree of volatility and (α1 + γ1) the degree of autoregressive

persistence of the conditional variance. Table 4.2 shows the combinations of

α1 and (α1 + γ1) that are used by the 15 different DGPs.

Critical values for the wavelet variance ratio unit root tests were determined

using simulation as follows:

For each wavelet function and sample size

1. A series was generated from the unit root AR(2) process with iid N(0,1)

3An AR(2) process is generated by yt = φ1yt−1 + φ2yt−2 + εt. The solution to this
difference equation depends on the 2 starting values of {yt}, and on {εt}. The difference
equation will be stable (hence AR(2) series stationary) if the larger (dominant) character-
istic root, zd=max(z1, z2), of the characteristic equation, z2 = φ1z+ φ2, satisfies |zd| < 1,
i.e. is inside the unit circle (see Enders; 2010, pp. 22-23). The larger root determines
the impact of past shocks i.e. persistence of the shocks. When the root equals unity, the
process is said to have a unit root, and shocks have permanent effects.

4a t distributed random variable with with n d.f has variance = (n-2)/n. The draws

from such a distribution have to be scaled by
(√

(n− 2)/n
)−1

to generate pseudo-random

numbers with variance equal to 1.
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Table 4.2: Volatility and persistence used for the DGPs

Model Volatility (α1) Persistance (α1 + γ1)

1 0.005 0.010
2 0.245
3 0.495
4 0.745
5 0.995

6 0.250 0.255
7 0.490
8 0.740
9 0.990

10 0.500 0.505
11 0.740
12 0.990

13 0.750 0.755
14 0.990

15 0.990 0.995

errors, as given in section 4.1

2. The unit level wavelet decomposition was performed on the series

3. The scaling coefficients were extracted

4. The wavelet ratio unit root test was done on the scaling coefficients

5. The process was repeated 10,000 times

6. The critical values were determined as the 5th percentile of the distri-

bution of the 10,000 values

The actual size for each unit root test was determined as follows:

1. The (MO)DWT variance ratio (MODWT-VR and DWT-VR) tests:
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For each experimental setting (combination of sample size, wavelet

function, GARCH(1,1) process and conditional distribution), 10,000

variance ratios are calculated, and the proportion of values that are

more extreme than the critical value provide the empirical size under

the Monte Carlo experimental conditions. Results that are outside of

the interval [0.0457, 0.0543] are considered to be from biased tests i.e

under- or over-sized tests

2. The Augmented Dickey-Fuller (ADF) test: Because the DGP is an AR

process of known order (2), the Dickey-Fuller regression is augmented

by one lagged difference, ∆yt−1, so that the maintained regression is

∆yt = µ+ γyt−1 + α1∆yt−1 + εt (4.5)

γ = φ1 + φ2 − 1 and α1 = −φ2

φ1 and φ2 are the AR(2) coefficients.

The citical values for the ADF test are known to depend on the sample

size as well as the lag order (see Cheung and Lai; 1995). The approx-

imate finite sample critical values that are used for the ADF test are

obtained from to the response surface method of Cheung and Lai (op.

cit.) The response surface function is given as:

cv(T, p) = κ0 + κ1 / T + κ2 / T
2ω1[(p) / T ] + ω2[(p) / T ]2 (4.6)

κ1 and κ2 relate the critical values to the sample size and ω1 and ω2
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relate the critical values to the dependence of the lag order of the fitted

ADF regression. p = 1 and therefore ADF(1) used here.

10,000 series were generated for each experimental condition and tested

for a unit root using the ADF test. The values of the test statistic are

compared to the critical values derived using the method described

above.

Values that are more extreme than the critical value indicate false

rejection of the null hypothesis of unit root. The proportion of rejec-

tions provides the empirical size under the Monte Carlo experimental

conditions. Results that are outside of the interval [0.0457, 0.0543] are

considered to be from biased tests

3. The ERS Tests - Dickey-Fuller GLS (DF-GLS) and ERS Point Optimal

(ERS-PT) tests:

The DF-GLS test uses an efficient version of the ADF t-statistic i.e

the test is a ADF test applied to efficiently detrended data without

an intercept. Because DGP used is known (an AR(2) process), the

number of lags used in the DF-GLS test is set to 1. The critical values

for both the ERS tests are found by interpolation of the simulation

results in Table 1. of Elliot et al. (1996, p. 825).

10,000 series were generated for each experimental condition and each

test was performed on the series. The proportion of values that are

more extreme than the critical value provide the empirical size under

the Monte Carlo experimental conditions. Results that are outside of

the interval [0.0457, 0.0543] are considered to be from biased tests i.e

under- or over-sized tests
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4. The Phillips-Perrorn test statistic (Phillips and Perron; 1988) is a mod-

ification of the basic Dickey-Fuller test statistic by a non-parametric

adjustment. Autocorrelation of the error terms that might result

from the underlying GDP not being AR(1) are addressed by using

the Newey-West heteroscedasticity and autocorrelation (HAC) esti-

mate of the long run variance (Newey and West; 1987). The trun-

cation lag used for the autocovariance in for this paper is set to

trunc(4(T/100)0.25) 5. The critical values are found by interpolation

of values in Table 4.2 Banerjee et al. (1993, p.103)

10,000 series were generated for each experimental condition and each

test was performed on the series. The proportion of values that are

more extreme than the critical value provide the empirical size of the

test.

5 Results

5.1 Comparison of size retention for unit root tests

5.1.1 GARCH(1,1) errors with N(0,1) conditional distribution

The test sizes for all DGPs are reported in Tables A.1, A.2 and A.3 in the ap-

pendix. All sizes which fall within the acceptance interval i.e [0.0457, 0.0543]

are shaded in gray. The wavelet ratio and ADF tests are shown to be un-

biased for series generated by models 1-5 of Table 4.2 i.e α1 = 0.005 and

(α1 + γ1) = (0.10, 0.245, 0.495, 0.745, 0.995). The ERS tests (ERS-PT

5see Said and Dickey (1985) and Schwert (1987) for how to choose the lag length when
approximating an ARMA(p, q) process with an AR(l) process. The method used here is
the fixed rule (l4) due to Schwert (1987)
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and DF-GLS) are also shown to be unbiased when used on the largest sam-

ple sizes. This result is expected because the volatility of the conditional

variance in these series is low.

Models 6-9 of Table 4.2 have moderate volatility (α1 = 0.25). The wavelet

ratio and ADF test is unbiased for models 6, 7, and 8. These models have a

moderate to high persistence in the conditional variance of GARCH errors

i.e 0.255, 0.49 and 0.74 respectively. Model number 9 has high persistence

in the conditional variance (α1 + γ1) = 0.99. For this model, the wavelet

variance ratio tests are shown to be unbiased but the ADF, the two ERS

tests and the PP tests are all shown to be biased.

Model 10 of Table 4.2 has moderately high volatility (α1 = 0.5) as well as

moderately high persistence in the conditional variance (α1 + γ1) = 0.505.

The wavelet ratio- and the ADF tests are unbiased for all sample sizes, and

the ERS and PP tests are unbiased for the largest sample size.

Models 12-15 of Table 4.2 have high persistence in the conditional variance

of the GARCH errors (as a result of a large volatility parameter). Only the

wavelet ratio tests are unbiased for these models, except model 13 where the

PP test has good performance.

5.1.2 GARCH(1,1) errors with GED(ν = 1.5) conditional distri-

bution

For models 1-8 and model 10 of Table 4.2, the wavelet ratio and ADF tests

are unbiased. The DF-GLS and ERS-PT also perform well for the larger

sample sizes (T=512 and T=1024). Models 12, 14 and 15 have high per-

sistence in the conditional variance of the GARCH(1,1) error (0.99, 0.99
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and 0.995 respectively). The only unbiased tests are the wavelet ratio

tests.

5.1.3 GARCH(1,1) errors with t(4 df) conditional distribution

The results for models 1-7 and 10-13 of Table 4.2 follow a similar pattern

to those where the standardized normal and GED conditional distributions

are used. All tests perform poorly for models 8, 14 and 15.

In general, over-sizing in the unit root tests results mainly from high volatil-

ity in the conditional variance of the GARCH error. The DWT-VR and

MODWT-VR tests perform well in comparison to the alternative unit root

tests, except when the conditional distribution of the GARCH error is the

fat-tailed t(4 df) distribution, where all the tests perform poorly. Tables

5.1, 5.2 and 5.3 show the actual test sizes for unit root tests performed

on series with GARCH errors for which α1 = (0.25, 0.5, 0.75, 0.99) and

(α1 + γ1) = (0.99, 0.995), using the three conditional distributions.

Table 5.1: Test sizes for series with GARCH(1,1) errors with N(0,1) con-
ditional distribution

GARCH parameters: α0 = 0.010, α1 = 0.250, and (α1 + γ1) = 0.990

T VR-DWT VR-MODWT ADF DF-GLS ERS-PT PP

64 0.0535 0.0489 0.0752 0.0997 0.1092 0.0523

128 0.0469 0.0534 0.0828 0.0878 0.0905 0.0681

256 0.0493 0.0479 0.0891 0.0792 0.0831 0.0735

512 0.0544 0.0507 0.0896 0.0787 0.0810 0.0724

1024 0.0505 0.0468 0.0902 0.0711 0.0723 0.0789
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Table 5.1: Test sizes for series with GARCH(1,1) errors with N(0,1) con-
ditional distribution

GARCH parameters: α0 = 0.010, α1 = 0.250, and (α1 + γ1) = 0.990

T VR-DWT VR-MODWT ADF DF-GLS ERS-PT PP

GARCH parameters: α0 = 0.010, α1 = 0.500, and (α1 + γ1) = 0.990

64 0.0525 0.0515 0.0796 0.1039 0.1091 0.0715

128 0.0469 0.0487 0.0890 0.0891 0.0914 0.0692

256 0.0465 0.0482 0.0920 0.0850 0.0843 0.0775

512 0.0534 0.0488 0.0957 0.0785 0.0770 0.0743

1024 0.0532 0.0537 0.0882 0.0751 0.0738 0.0787

GARCH parameters: α0 = 0.010, α1 = 0.750, and (α1 + γ1) = 0.990

64 0.0537 0.0521 0.0758 0.0909 0.1034 0.0703

128 0.0467 0.0483 0.0841 0.0821 0.0762 0.0712

256 0.0469 0.0502 0.0834 0.0736 0.0714 0.0689

512 0.0494 0.0512 0.0815 0.0748 0.0664 0.0667

1024 0.0525 0.0500 0.0773 0.0597 0.0656 0.0717

GARCH parameters: α0 = 0.005, α1 = 0.990, and (α1 + γ1) = 0.995

64 0.0467 0.0557 0.0660 0.0818 0.0926 0.0605

128 0.0519 0.0436 0.0693 0.0698 0.0723 0.0639

256 0.0501 0.0510 0.0696 0.0604 0.0670 0.0621

512 0.0512 0.0470 0.0707 0.0598 0.0613 0.0603

1024 0.0484 0.0466 0.0688 0.0572 0.0578 0.0628
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Table 5.2: Test sizes for series with GARCH(1,1) errors with GED (ν =
1.5) conditional distribution

GARCH parameters: α0 = 0.010, α1 = 0.250, and (α1 + γ1) = 0.990

T VR-DWT VR-MODWT ADF DF-GLS ERS-PT PP

64 0.0486 0.0554 0.0788 0.0975 0.1060 0.0551

128 0.0473 0.0567 0.0866 0.0877 0.0837 0.0642

256 0.0547 0.0500 0.0928 0.0878 0.0809 0.0732

512 0.0462 0.0536 0.0945 0.0837 0.0795 0.0803

1024 0.0532 0.0426 0.0967 0.0790 0.0764 0.0776

GARCH parameters: α0 = 0.010, α1 = 0.500, and (α1 + γ1) = 0.990

64 0.0486 0.0474 0.0853 0.1016 0.1077 0.0646

128 0.0533 0.0472 0.0846 0.0899 0.0866 0.0685

256 0.0509 0.0538 0.0930 0.0824 0.0829 0.0708

512 0.0479 0.0480 0.0921 0.0784 0.0770 0.0745

1024 0.0524 0.0460 0.0916 0.0725 0.0768 0.0734

GARCH parameters: α0 = 0.010, α1 = 0.750, and (α1 + γ1) = 0.990

64 0.0476 0.0468 0.0804 0.0986 0.1036 0.0667

128 0.0492 0.0488 0.0815 0.0826 0.0832 0.0690

256 0.0514 0.0423 0.0784 0.0720 0.0710 0.0713

512 0.0521 0.0531 0.0812 0.0658 0.0672 0.0694

1024 0.0487 0.0492 0.0826 0.0647 0.0689 0.0640

GARCH parameters: α0 = 0.005, α1 = 0.990, and (α1 + γ1) = 0.995

64 0.0500 0.0501 0.0669 0.0810 0.0925 0.0634

128 0.0495 0.0482 0.0698 0.0699 0.0722 0.0653
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Table 5.2: Test sizes for series with GARCH(1,1) errors with GED (ν =
1.5) conditional distribution

GARCH parameters: α0 = 0.010, α1 = 0.250, and (α1 + γ1) = 0.990

T VR-DWT VR-MODWT ADF DF-GLS ERS-PT PP

256 0.0505 0.0537 0.0714 0.0580 0.0663 0.0593

512 0.0551 0.0527 0.0697 0.0592 0.0598 0.0620

1024 0.0467 0.0490 0.0702 0.0567 0.0573 0.0610

Table 5.3: Test sizes for series with GARCH(1,1) errors from a standard-
ized t conditional distribution with 4 degrees of freedom

GARCH parameters: α0 = 0.010, α1 = 0.250, and (α1 + γ1) = 0.990

T VR-DWT VR-MODWT ADF DF-GLS ERS-PT PP

64 0.0532 0.0538 0.0769 0.1015 0.1058 0.0615

128 0.0569 0.0586 0.0897 0.0857 0.0869 0.0657

256 0.0545 0.0586 0.0938 0.0826 0.0868 0.0705

512 0.0516 0.0582 0.0955 0.0818 0.0771 0.0721

1024 0.0571 0.0546 0.0931 0.0779 0.0723 0.0740

GARCH parameters: α0 = 0.010, α1 = 0.500, and (α1 + γ1) = 0.990

64 0.0542 0.0531 0.0782 0.0957 0.1031 0.0639

128 0.0468 0.0474 0.0851 0.0877 0.0829 0.0667

256 0.0506 0.0497 0.0881 0.0774 0.0778 0.0766

512 0.0494 0.0499 0.0909 0.0718 0.0737 0.0718

1024 0.0422 0.0492 0.0850 0.0664 0.0690 0.0702

GARCH parameters: α0 = 0.010, α1 = 0.750, and (α1 + γ1) = 0.990

64 0.0525 0.0451 0.0756 0.0919 0.1014 0.0624
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Table 5.3: Test sizes for series with GARCH(1,1) errors from a standard-
ized t conditional distribution with 4 degrees of freedom

GARCH parameters: α0 = 0.010, α1 = 0.250, and (α1 + γ1) = 0.990

T VR-DWT VR-MODWT ADF DF-GLS ERS-PT PP

128 0.0481 0.0546 0.0721 0.0771 0.0766 0.0655

256 0.0437 0.0439 0.0776 0.0689 0.0688 0.0681

512 0.0415 0.0434 0.0730 0.0616 0.0583 0.0644

1024 0.0443 0.0441 0.0738 0.0600 0.0621 0.0622

GARCH parameters: α0 = 0.005, α1 = 0.990, and (α1 + γ1) = 0.995

64 0.0452 0.0441 0.0658 0.0733 0.0872 0.0593

128 0.0435 0.0452 0.0645 0.0661 0.0671 0.0564

256 0.0432 0.0453 0.0654 0.0581 0.0603 0.0620

512 0.0456 0.0400 0.0661 0.0542 0.0530 0.0556

1024 0.0441 0.0475 0.0626 0.0523 0.0495 0.0581

5.2 Comparison of power functions for the unit root tests

The Monte Carlo design for the power comparisons is similar to that for

size calculations. However, the data are generated under the alternative

hypothesis with the dominant roots of the characteristic equations of the

AR(2) process equal being (0.99, 0.98, 0.95, 0.90 and 0.80); which correspond

to the following autoregressive coefficients respectively,

φ1 = 1.25 and φ2 =((0.2574), (0.2646), (0.285), (0.315), (0.36))

The scaled conditional error, ut (from equation 4.3), follows the three con-
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ditional distributions used before. Over-sized tests, when used for small

samples, will have more power than unbiased tests. To avoid this, size-

adjusted power is reported for all the unit root tests. The tests are correctly

sized by simulating critical values for each sample size.

The size-adjusted power curves for the simulated series with the GARCH(1,1)

parameters α0 = 0.01, α1 = 0.25 and (α1 + γ1) = 0.99 are given in Figures

5.1, 5.2 and 5.3 for each of the three conditional distributions. The corre-

sponding power functions for the tests reported in Tables 5.1, 5.2 and 5.3

are presented in the appendix. These are the power curves for DGPs with

GARCH(1,1) errors for which the persistence in the conditional variance is

(α1 + γ1) ≥ 0.99.

For the smaller sample sizes (T=64 and 128), the tests have comparable

power in the near integrated case (dominant root = 0.99). The difference in

power becomes bigger as dominant root gets smaller. When the dominant

root is 0.8, the DF-GLS and ERS-PT have the highest power, followed by

the two variance ratio tests, then the Dickey-Fuller test. The Phillips-Perron

test has the lowest power.

For the largest sample size (T=1024) there is a considerable difference in

power between the tests that perform best and worst.
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Figure 5.1: Power curves for tests using a DGP with Normal (0,1) condi-
tional distribution, α0 = 0.01 α1 = 0.25 (α1 + γ1) = 0.99
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Figure 5.2: Power curves for tests using a DGP with GED(ν = 1.5) condi-
tional distribution, α0 = 0.01, α1 = 0.25 and (α1 + γ1) = 0.99
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Figure 5.3: Power curves for tests using a DGP with t(4) conditional distri-
bution, α0 = 0.01, α1 = 0.25 and (α1 + γ1) = 0.99
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Depending on the conditional distribution, the DF-GLS and ERS-PT tests

have between 39% and 40% power when the dominant root is 0.99. The

ADF test has power between 23% and 26%, and the PP test has power

between 19% and 21%. The DWT-VR and MODWT-VR have power of

between 35% and 36%. These results are expected because the tests based

on efficient detrending are designed to be powerful against near integrated

alternatives compared to the Dickey-Fuller tests.

The three conditional distributions have similar power functions. This sug-

gests that the six unit root tests considered here are robust to the leptokurtic

and fat-tailed conditional distributions used in the study.

6 Conclusions

The problem of over-rejection of the unit root null hypothesis in the pres-

ence of GARCH(1,1) errors has been revisited in this paper. A unit root test

based on the wavelet variance ratio has been used on data that is filtered

from the high frequency components using the discrete wavelet transform.

This is a combination of the methods used by Li and Shukur (2011) and Fan

and Gençay (2010). The wavelet based unit root test is shown to be an im-

provement on 4 widely used unit root tests (the Augmented Dickey-Fuller,

DF-GLS, ERS Point Optimal, and the Phillip-Perron tests) for sample sizes

between 64 and 1024. The wavelet ratio tests perform as well as, or better

than the other unit root tests when the GARCH(1,1) errors have fat-tailed

and leptokurtic conditional distributions. Only in the case where the condi-

tional distribution is a t distribution with 4 degrees, combined with moderate

to high volatility and persistence in conditional variance of the GARCH er-
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ror (α1 + γ1 ≥ 0.99), do the two wavelet variance ratio tests become slightly

biased.

In addition, size-adjusted power comparisons were made between the unit

root tests. For the smallest sample sizes T=(64, 128), all tests had similar

power for the near unit root alternatives. As the alternatives moved further

from the unit root, the DF-GLS and ERS-PT tests were most powerful,

followed by the wavelet ratio tests. The ADF and PP test had least power.

The power functions were similar for the three conditional distributions for

all tests using the same sample sizes.
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Gençay, R., Selçuk, F. and Whitcher, B. J. (2001). An Introduction to

Wavelets and Other Filtering Methods in Finance and Economics, Else-



This is a draft copy. Please do not reference without contacting the authors

vier.

Kim, K. and Schmidt, P. (1993). Unit root tests with conditional het-

eroskedasticity, Journal of Econometrics 59(3): 287–300.

Li, W., Ling, S. and McAleer, M. (2002). Recent theoretical results for

time series models with GARCH errors, Journal of Economic Surveys

16(3): 245–269.

Li, Y. and Shukur, G. (2011). Wavelet improvement of the over-rejection

of unit root test under GARCH errors: An application to swedish

immigration data, Communications in Statistics-Theory and Methods

40(13): 2385–2396.

Ling, S. and Li, W. (1998). Limiting distributions of maximum likelihood

estimators for unstable autoregressive moving-average time series with

general autoregressive heteroscedastic errors, The Annals of Statistics

26(1): 84–125.

Ling, S. and Li, W. (2003). Asymptotic inference for unit root processes

with GARCH (1, 1) errors, Econometric Theory 19(4): 541–564.

Ling, S., Li, W. and McAleer, M. (2003). Estimation and testing for unit root

processes with GARCH (1, 1) errors: theory and monte carlo evidence,

Econometric Reviews 22(2): 179–202.

Long, J. S. and Ervin, L. H. (2000). Using heteroscedasticity consistent

standard errors in the linear regression model, The American Statistician

54(3): 217–224.



This is a draft copy. Please do not reference without contacting the authors

MacKinnon, J. G. and White, H. (1985). Some heteroskedasticity-consistent

covariance matrix estimators with improved finite sample properties,

Journal of Econometrics 29(3): 305–325.

Nason, G. P. (2008). Wavelet Methods in Statistics with R, Springer.

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new

approach, Econometrica: Journal of the Econometric Society pp. 347–370.

Newey, W. and West, K. (1987). A simple positive semi-definite het-

eroscedasticity and autocorrelation consistent covariance matrix, Econo-

metrica 55(3): 703–708.

Pantula, S. G. (1988). Estimation of autoregressive models with ARCH
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A Appendix

A.1 Alternative tests

A brief overview of the four alternative unit root tests is given in this ap-

pendix. The four tests are the Augmented DF test (Dickey and Fuller;

1981; Said and Dickey; 1984), The ERS Point Optimal and DF-GLS tests

(Elliot, Rothenberg and Stock; 1996) and the PP test (Phillips and Perron;

1988).

A.1.1 The Augmented Dickey-Fuller test (ADF)

The ADF (Dickey and Fuller; 1981; Said and Dickey; 1984) augments the

basic Dickey-Fuller tests with lagged differences in order to accommodate

ARMA(p,q) dynamics, the order of which is usually unknown As a result, p

in equation (A.1) is chosen to be sufficiently large so that εt is white noise.

The ADF tests the null hypothesis that a time series is ARIMA(p, 1, 0)

against the alternative that it is a stationary AR(p+ 1) process. The tests

regression is

∆yt = µt + γyt−1 +

p∑
j=1

αj∆yt−j + εt (A.1)

Under the null hypothesis γ = 0 and yt is I(1). The test statistic (pseudo-t

statistic) is the t statistic used for testing the significance of the coefficient

of the lagged dependent variable yt−1. The test statistic follows the DF

(Dickey-Fuller) distribution and critical values are obtained through simu-

lation.
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A.1.2 Eliott, Rothenberg and Stock’s Point Optimal Test (ERS-

PT)

The ERS test uses efficient detrending to retain power when the dominant

root is close to unity. For this test, under HA, the dominant root (ρ) takes

a value that is local to unity i.e.

HA : ρ = ρc = 1 + c/T < 1 (A.2)

with c < 0 so that for c = −10 and T = 100, for example, ρc = 0.90.

The test statistic is then asymptotically optimal for this alternative. Eliott,

Rothenberg and Stock (op. cit) recommend to choose (c = c) corresponding

to the point on the power envelope that has 50% power.

The test is constructed as follows: Consider the DGP in common factor

form as in Patterson (2009, p. 230-231)

yt = µt + ut (A.3)

(1− ρL)ut = vt (A.4)

vt = εt (A.5)

so that,

y1 = µ1 + u1 (A.6)

(1− ρL)yt = (1− ρL)µt + εt t = 2, . . . , T (A.7)

with u1 assumed to be drawn from the unconditional distribution of ut.
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The dependent variable in equation (A.7) is a quasi-difference of yt and the

independent variable is a quasi-differenced trend. When ρ is evaluated at ρc,

as in the alternative hypothesis (ρ < 1), then the dependent and independent

(quasi-differenced) variables are yc = {yt−ρcyt−1} and Xc = {µt−ρcµt−1},

respectively.

Let S(ρc) be the residual sum of squares from a regression of yc on Xc.

Then the point optimal test against the alternative ρc is

PT = [S(ρc)− ρcS(1)]/λ̂2 (A.8)

where λ̂2 is a consistent estimate of the long-run variance of ut. The critical

values for this test are given by Eliott, Rothenberg and Stock (op. cit) for

sample sizes T = (50, 100, 200,∞).

A.1.3 Dickey-Fuller Generalized Least Squares (DF-GLS)

Consider equation (A.3) and let the deterministic part be given as

µt = β0 + β1t (A.9)

= [1 t]β (A.10)

for the linear trend case, with β = [β0 β1]
T .

The quasi-differenced data for this linear trend case can be obtained in a

way similar to that used in A.1.2 and the following detrending regression

fitted

yc = Xcβc + νc (A.11)
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The detrending parameters can βc, that are estimated under the alternative

can then be used to GLS-detrend the data

ydt = yt −Xcβc (A.12)

The ADF regression is then estimated on the GLS-detrended data

∆yt
d = γydt−1 +

p∑
j=1

αj∆y
d
t−j + ε (A.13)

The test regression does not include the deterministic terms because these

have been accounted for by the detrending. The test for the unit root

proceeds using the ADF test statistic as explained in section A.1.1.

A.1.4 Phillips-Perron (PP) unit root test

The Phillips and Perron unit root test addresses the problems of serial cor-

relation when the underlying DGP may not be AR(1). The test is a direct

modification the ADF test statistic. Instead of augmenting the basic Dickey-

Fuller regression with lagged differences of the dependent variable to whiten

the residuals, the Phillips-Perron test uses the Newey-West heteroscedastic-

ity and autocorrelation consistent (HAC) estimator of the long-run variance

to make a correction to the basic Dickey-Fuller test statistic.

The test regression for the PP test is given as follows

∆yt = µt + γyt−1 + ut (A.14)

where ut may be autocorrelated and possibly heteroscedastic.
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The PP test corrects for the autocorrelation and heteroscedasticity in a non-

parametric way using the modified DF statistics Zµ and Zτ which correspond

to the DF normalized bias and t-statistic respectively. Phillips and Perron

(op. cit) show that, under the null hypothesis, each of the Z statistics has a

limiting distribution that is the same as its corresponding DF statistic.

The modified test statistics are given as (Patterson; 2000; Zivot and Wang;

2007, p. 264; p. 127)

Zµ = T γ̂ − 1

2

(
T 2 × SE(γ̂2)

σ̂2

)
(λ̂2 − σ̂2) (A.15)

Zτ =
σ̂

λ̂
tγ=0 −

1

2

(
λ̂2 − σ̂2

λ̂2

)(
T × SE(γ̂2)

σ̂2

)
(A.16)

where

σ̂2 = T−1
T∑
t=1

û2

λ̂2 = σ̂2 + 2

l∑
s=1

wsl

T∑
t=s+1

ε̂tε̂t−s/T

wsl = 1− s/(l + 1)

σ̂2 (sample variance of the least squares residuals) and λ̂2 (the Newey-West

long-run variance estimate) are consistent estimates of the short- and long-

run variances of ut respectively. The truncation lag for the covariances, l,

can be chosen using the autocorrelation function.

The critical values for the PP test are the same as those of the ADF test

for large sample sizes.
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A.2 Test sizes for all the considered DGPs

Table A.1: Test sizes for series with GARCH(1,1) errors with N(0,1) con-
ditional distribution

T VR-DWT VR-MODWT ADF DF-GLS ERS-PT PP

GARCH parameters: α0 = 0.010, α1 = 0.250, and (α1 + γ1) = 0.990

64 0.0490 0.0479 0.0479 0.0808 0.0889 0.0348

128 0.0462 0.0462 0.0471 0.0671 0.0660 0.0357

256 0.0522 0.0535 0.0484 0.0600 0.0582 0.0393

512 0.0540 0.0502 0.0483 0.0524 0.0515 0.0397

1024 0.0529 0.0456 0.0510 0.0560 0.0495 0.0405

GARCH parameters: α0 = 0.775, α1 = 0.005, and (α1 + γ1) = 0.245

64 0.0504 0.0480 0.0524 0.0810 0.0902 0.0318

128 0.0545 0.0523 0.0477 0.0680 0.0717 0.0330

256 0.0507 0.0456 0.0511 0.0580 0.0612 0.0388

512 0.0481 0.0523 0.0456 0.0570 0.0576 0.0411

1024 0.0477 0.0500 0.0484 0.0564 0.0493 0.0409

GARCH parameters: α0 = 0.505, α1 = 0.005, and (α1 + γ1) = 0.495

64 0.0482 0.0491 0.0495 0.0838 0.0935 0.0288

128 0.0507 0.0505 0.0510 0.0708 0.0679 0.0326

256 0.0496 0.0452 0.0509 0.0571 0.0614 0.0361

512 0.0520 0.0500 0.0474 0.0576 0.0558 0.0414

1024 0.0510 0.0553 0.0477 0.0498 0.0522 0.0384

GARCH parameters: α0 = 0.255, α1 = 0.005, and (α1 + γ1) = 0.745

64 0.0508 0.0529 0.0485 0.0814 0.0906 0.0325
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Table A.1: Test sizes for series with GARCH(1,1) errors with N(0,1) con-
ditional distribution

T VR-DWT VR-MODWT ADF DF-GLS ERS-PT PP

128 0.0447 0.0483 0.0459 0.0688 0.0653 0.0316

256 0.0526 0.0531 0.0509 0.0605 0.0645 0.0381

512 0.0500 0.0515 0.0478 0.0553 0.0501 0.0424

1024 0.0451 0.0441 0.0553 0.0492 0.0475 0.0396

GARCH parameters: α0 = 0.005, α1 = 0.005, and (α1 + γ1) = 0.995

64 0.0484 0.0490 0.0485 0.0843 0.0904 0.0300

128 0.0489 0.0477 0.0528 0.0652 0.0659 0.0370

256 0.0487 0.0517 0.0502 0.0602 0.0588 0.0370

512 0.0509 0.0570 0.0561 0.0597 0.0574 0.0461

1024 0.0485 0.0496 0.0483 0.0528 0.0505 0.0464

GARCH parameters: α0 = 0.745, α1 = 0.250, and (α1 + γ1) = 0.255

64 0.0455 0.0537 0.0440 0.0784 0.0915 0.0349

128 0.0548 0.0436 0.0470 0.0699 0.0635 0.0339

256 0.0496 0.0483 0.0546 0.0586 0.0583 0.0388

512 0.0440 0.0513 0.0516 0.0574 0.0542 0.0416

1024 0.0499 0.0471 0.0516 0.0482 0.0525 0.0429

GARCH parameters: α0 = 0.051, α1 = 0.250, and (α1 + γ1) = 0.490

64 0.0476 0.0540 0.0524 0.0789 0.0903 0.0384

128 0.0512 0.0462 0.0536 0.0642 0.0657 0.0385

256 0.0501 0.0529 0.0539 0.0597 0.0591 0.0409

512 0.0548 0.0502 0.0512 0.0606 0.0557 0.0388
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Table A.1: Test sizes for series with GARCH(1,1) errors with N(0,1) con-
ditional distribution

T VR-DWT VR-MODWT ADF DF-GLS ERS-PT PP

1024 0.0494 0.0499 0.0503 0.0526 0.0508 0.0446

GARCH parameters: α0 = 0.260, α1 = 0.250, and (α1 + γ1) = 0.740

64 0.0454 0.0503 0.0529 0.0841 0.0945 0.0413

128 0.0475 0.0503 0.0510 0.0700 0.0698 0.0406

256 0.0494 0.0515 0.0548 0.0638 0.0617 0.0431

512 0.0499 0.0496 0.0504 0.0609 0.0534 0.0404

1024 0.0525 0.0538 0.0495 0.0540 0.0538 0.0424

GARCH parameters: α0 = 0.010, α1 = 0.250, and (α1 + γ1) = 0.990

64 0.0535 0.0489 0.0752 0.0997 0.1092 0.0523

128 0.0469 0.0534 0.0828 0.0878 0.0905 0.0681

256 0.0493 0.0479 0.0891 0.0792 0.0831 0.0735

512 0.0544 0.0507 0.0896 0.0787 0.0810 0.0724

1024 0.0505 0.0468 0.0902 0.0711 0.0723 0.0789

GARCH parameters: α0 = 0.495, α1 = 0.500, and (α1 + γ1) = 0.505

64 0.0486 0.0510 0.0519 0.0811 0.0922 0.0420

128 0.0488 0.0485 0.0577 0.0686 0.0699 0.0368

256 0.0486 0.0482 0.0471 0.0603 0.0613 0.0377

512 0.0448 0.0522 0.0523 0.0552 0.0532 0.0434

1024 0.0520 0.0502 0.0500 0.0490 0.0453 0.0460

GARCH parameters: α0 = 0.260, α1 = 0.500, and (α1 + γ1) = 0.740

64 0.0500 0.0487 0.0572 0.0792 0.0943 0.0471
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Table A.1: Test sizes for series with GARCH(1,1) errors with N(0,1) con-
ditional distribution

T VR-DWT VR-MODWT ADF DF-GLS ERS-PT PP

128 0.0532 0.0497 0.0582 0.0698 0.0700 0.0406

256 0.0482 0.0508 0.0589 0.0623 0.0619 0.0459

512 0.0459 0.0448 0.0576 0.0556 0.0580 0.0478

1024 0.0504 0.0500 0.0544 0.0531 0.0537 0.0459

GARCH parameters: α0 = 0.010, α1 = 0.500, and (α1 + γ1) = 0.990

64 0.0525 0.0515 0.0796 0.1039 0.1091 0.0715

128 0.0469 0.0487 0.0890 0.0891 0.0914 0.0692

256 0.0465 0.0482 0.0920 0.0850 0.0843 0.0775

512 0.0534 0.0488 0.0957 0.0785 0.0770 0.0743

1024 0.0532 0.0537 0.0882 0.0751 0.0738 0.0787

GARCH parameters: α0 = 0.245, α1 = 0.750, and (α1 + γ1) = 0.755

64 0.0460 0.0458 0.0559 0.0763 0.0895 0.0497

128 0.0461 0.0448 0.0584 0.0661 0.0695 0.0491

256 0.0517 0.0465 0.0575 0.0611 0.0550 0.0501

512 0.0492 0.0466 0.0556 0.0565 0.0541 0.0503

1024 0.0505 0.0463 0.0540 0.0538 0.0507 0.0466

GARCH parameters: α0 = 0.010, α1 = 0.750, and (α1 + γ1) = 0.990

64 0.0537 0.0521 0.0758 0.0909 0.1034 0.0703

128 0.0467 0.0483 0.0841 0.0821 0.0762 0.0712

256 0.0469 0.0502 0.0834 0.0736 0.0714 0.0689

512 0.0494 0.0512 0.0815 0.0748 0.0664 0.0667
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Table A.1: Test sizes for series with GARCH(1,1) errors with N(0,1) con-
ditional distribution

T VR-DWT VR-MODWT ADF DF-GLS ERS-PT PP

1024 0.0525 0.0500 0.0773 0.0597 0.0656 0.0717

GARCH parameters: α0 = 0.005, α1 = 0.990, and (α1 + γ1) = 0.995

64 0.0467 0.0557 0.0660 0.0818 0.0926 0.0605

128 0.0519 0.0436 0.0693 0.0698 0.0723 0.0639

256 0.0501 0.0510 0.0696 0.0604 0.0670 0.0621

512 0.0512 0.0470 0.0707 0.0598 0.0613 0.0603

1024 0.0484 0.0466 0.0688 0.0572 0.0578 0.0628
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Table A.2: Test sizes for series with GARCH(1,1) errors with GED(ν =
1.5) conditional distribution

T VR-DWT VR-MODWT ADF DF-GLS ERS-PT PP

GARCH parameters: α0 = 0.010, α1 = 0.250, and (α1 + γ1) = 0.990

64 0.0557 0.0498 0.0478 0.0887 0.0918 0.0329

128 0.0443 0.0545 0.0503 0.0702 0.0688 0.0323

256 0.0482 0.0542 0.0502 0.0622 0.0570 0.0395

512 0.0495 0.0479 0.0503 0.0567 0.0509 0.0397

1024 0.0505 0.0438 0.0494 0.0495 0.0529 0.0413

GARCH parameters: α0 = 0.775, α1 = 0.005, and (α1 + γ1) = 0.245

64 0.0528 0.0519 0.0485 0.0827 0.0904 0.0332

128 0.0580 0.0514 0.0485 0.0722 0.0635 0.0398

256 0.0517 0.0486 0.0494 0.0563 0.0595 0.0375

512 0.0470 0.0547 0.0430 0.0539 0.0528 0.0412

1024 0.0519 0.0516 0.0483 0.0537 0.0462 0.0449

GARCH parameters: α0 = 0.505, α1 = 0.005, and (α1 + γ1) = 0.495

64 0.0527 0.0480 0.0499 0.0840 0.0962 0.0315

128 0.0469 0.0567 0.0478 0.0729 0.0703 0.0362

256 0.0472 0.0474 0.0499 0.0581 0.0593 0.0374

512 0.0512 0.0531 0.0493 0.0517 0.0536 0.0441

1024 0.0484 0.0467 0.0504 0.0503 0.0468 0.0435

GARCH parameters: α0 = 0.255, α1 = 0.005, and (α1 + γ1) = 0.745

64 0.0507 0.0466 0.0495 0.0859 0.0983 0.0330

128 0.0500 0.0486 0.0503 0.0686 0.0679 0.0359
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Table A.2: Test sizes for series with GARCH(1,1) errors with GED(ν =
1.5) conditional distribution

T VR-DWT VR-MODWT ADF DF-GLS ERS-PT PP

256 0.0448 0.0511 0.0510 0.0566 0.0593 0.0347

512 0.0489 0.0499 0.0506 0.0526 0.0548 0.0364

1024 0.0562 0.0549 0.0506 0.0516 0.0500 0.0418

GARCH parameters: α0 = 0.005, α1 = 0.005, and (α1 + γ1) = 0.995

64 0.0529 0.0503 0.0421 0.0851 0.0930 0.0315

128 0.0530 0.0426 0.0496 0.0676 0.0666 0.0364

256 0.0522 0.0530 0.0507 0.0626 0.0620 0.0376

512 0.0526 0.0500 0.0494 0.0520 0.0509 0.0409

1024 0.0486 0.0492 0.0530 0.0475 0.0519 0.0439

GARCH parameters: α0 = 0.745, α1 = 0.250, and (α1 + γ1) = 0.255

64 0.0467 0.0499 0.0509 0.0812 0.0928 0.0335

128 0.0543 0.0453 0.0481 0.0673 0.0674 0.0412

256 0.0519 0.0552 0.0467 0.0531 0.0557 0.0398

512 0.0496 0.0467 0.0503 0.0501 0.0517 0.0395

1024 0.0528 0.0536 0.0513 0.0505 0.0531 0.0402

GARCH parameters: α0 = 0.051, α1 = 0.250, and (α1 + γ1) = 0.490

64 0.0491 0.0492 0.0524 0.0849 0.0904 0.0374

128 0.0520 0.0485 0.0475 0.0673 0.0640 0.0375

256 0.0498 0.0491 0.0583 0.0543 0.0591 0.0406

512 0.0445 0.0514 0.0539 0.0569 0.0559 0.0378

1024 0.0521 0.0505 0.0517 0.0535 0.0507 0.0430
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Table A.2: Test sizes for series with GARCH(1,1) errors with GED(ν =
1.5) conditional distribution

T VR-DWT VR-MODWT ADF DF-GLS ERS-PT PP

GARCH parameters: α0 = 0.260, α1 = 0.250, and (α1 + γ1) = 0.740

64 0.0489 0.0457 0.0550 0.0831 0.0929 0.0441

128 0.0491 0.0493 0.0538 0.0702 0.0671 0.0454

256 0.0478 0.0493 0.0532 0.0598 0.0624 0.0412

512 0.0544 0.0463 0.0510 0.0520 0.0540 0.0425

1024 0.0506 0.0473 0.0507 0.0518 0.0513 0.0412

GARCH parameters: α0 = 0.010, α1 = 0.250, and (α1 + γ1) = 0.990

64 0.0486 0.0554 0.0788 0.0975 0.1060 0.0551

128 0.0473 0.0567 0.0866 0.0877 0.0837 0.0642

256 0.0547 0.0500 0.0928 0.0878 0.0809 0.0732

512 0.0462 0.0536 0.0945 0.0837 0.0795 0.0803

1024 0.0532 0.0426 0.0967 0.0790 0.0764 0.0776

GARCH parameters: α0 = 0.495, α1 = 0.500, and (α1 + γ1) = 0.055

64 0.0467 0.0566 0.0543 0.0750 0.0877 0.0378

128 0.0499 0.0462 0.0515 0.0645 0.0652 0.0429

256 0.0496 0.0506 0.0530 0.0583 0.0604 0.0420

512 0.0493 0.0497 0.0487 0.0530 0.0544 0.0399

1024 0.0453 0.0520 0.0538 0.0511 0.0468 0.0453

GARCH parameters: α0 = 0.260, α1 = 0.500, and (α1 + γ1) = 0.740

64 0.0486 0.0498 0.0586 0.0786 0.0982 0.0480

128 0.0478 0.0478 0.0563 0.0727 0.0718 0.0436
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Table A.2: Test sizes for series with GARCH(1,1) errors with GED(ν =
1.5) conditional distribution

T VR-DWT VR-MODWT ADF DF-GLS ERS-PT PP

256 0.0481 0.0463 0.0558 0.0602 0.0621 0.0492

512 0.0501 0.0452 0.0586 0.0529 0.0555 0.0460

1024 0.0576 0.0497 0.0545 0.0533 0.0516 0.0444

GARCH parameters: α0 = 0.010, α1 = 0.500, and (α1 + γ1) = 0.990

64 0.0486 0.0474 0.0853 0.1016 0.1077 0.0646

128 0.0533 0.0472 0.0846 0.0899 0.0866 0.0685

256 0.0509 0.0538 0.0930 0.0824 0.0829 0.0708

512 0.0479 0.0480 0.0921 0.0784 0.0770 0.0745

1024 0.0524 0.0460 0.0916 0.0725 0.0768 0.0734

GARCH parameters: α0 = 0.245, α1 = 0.750, and (α1 + γ1) = 0.755

64 0.0457 0.0514 0.0584 0.0790 0.0883 0.0506

128 0.0467 0.0510 0.0577 0.0715 0.0656 0.0483

256 0.0522 0.0477 0.0579 0.0592 0.0615 0.0466

512 0.0473 0.0429 0.0550 0.0610 0.0589 0.0473

1024 0.0459 0.0511 0.0567 0.0563 0.0523 0.0477

GARCH parameters: α0 = 0.010, α1 = 0.750, and (α1 + γ1) = 0.990

64 0.0476 0.0468 0.0804 0.0986 0.1036 0.0667

128 0.0492 0.0488 0.0815 0.0826 0.0832 0.0690

256 0.0514 0.0423 0.0784 0.0720 0.0710 0.0713

512 0.0521 0.0531 0.0812 0.0658 0.0672 0.0694

1024 0.0487 0.0492 0.0826 0.0647 0.0689 0.0640
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Table A.2: Test sizes for series with GARCH(1,1) errors with GED(ν =
1.5) conditional distribution

T VR-DWT VR-MODWT ADF DF-GLS ERS-PT PP

GARCH parameters: α0 = 0.005, α1 = 0.990, and (α1 + γ1) = 0.995

64 0.0500 0.0501 0.0669 0.0810 0.0925 0.0634

128 0.0495 0.0482 0.0698 0.0699 0.0722 0.0653

256 0.0505 0.0537 0.0714 0.0580 0.0663 0.0593

512 0.0551 0.0527 0.0697 0.0592 0.0598 0.0620

1024 0.0467 0.0490 0.0702 0.0567 0.0573 0.0610
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Table A.3: Test sizes for series with GARCH(1,1) errors with GED(ν =
1.5) conditional distribution

T VR-DWT VR-MODWT ADF DF-GLS ERS-PT PP

GARCH parameters: α0 = 0.010, α1 = 0.250, and (α1 + γ1) = 0.990

64 0.0483 0.0429 0.0523 0.0843 0.0879 0.0329

128 0.0527 0.051 0.0507 0.0655 0.0653 0.0311

256 0.0487 0.0487 0.048 0.0548 0.0575 0.0349

512 0.0506 0.0451 0.0483 0.0554 0.0527 0.0349

1024 0.0539 0.0514 0.0469 0.0481 0.0526 0.0322

GARCH parameters: α0 = 0.775, α1 = 0.005, and (α1 + γ1) = 0.245

64 0.0551 0.0514 0.0549 0.083 0.0881 0.0353

128 0.05 0.0564 0.0459 0.0662 0.0602 0.0337

256 0.0499 0.0518 0.0504 0.0557 0.0589 0.0340

512 0.0483 0.0438 0.0511 0.0594 0.0499 0.0327

1024 0.0498 0.0483 0.0468 0.0475 0.0519 0.0350

GARCH parameters: α0 = 0.505, α1 = 0.005, and (α1 + γ1) = 0.495

64 0.0572 0.047 0.0486 0.0783 0.0874 0.0354

128 0.0563 0.0479 0.0462 0.0634 0.064 0.0351

256 0.0488 0.0455 0.053 0.0584 0.0609 0.0313

512 0.0537 0.048 0.0544 0.057 0.0516 0.0317

1024 0.0507 0.0533 0.046 0.0515 0.0481 0.0330

GARCH parameters: α0 = 0.255, α1 = 0.005, and (α1 + γ1) = 0.745

64 0.0476 0.0505 0.0523 0.0841 0.0864 0.0320

128 0.0516 0.0499 0.0506 0.0664 0.0672 0.0350
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Table A.3: Test sizes for series with GARCH(1,1) errors with GED(ν =
1.5) conditional distribution

T VR-DWT VR-MODWT ADF DF-GLS ERS-PT PP

256 0.0574 0.0544 0.047 0.0606 0.0574 0.0335

512 0.0525 0.0531 0.049 0.0513 0.0563 0.0361

1024 0.0542 0.0569 0.0483 0.0536 0.0514 0.0361

GARCH parameters: α0 = 0.005, α1 = 0.005, and (α1 + γ1) = 0.995

64 0.0499 0.0524 0.0479 0.0827 0.0897 0.0344

128 0.0534 0.0519 0.0503 0.0694 0.0647 0.0333

256 0.0522 0.0505 0.0552 0.0563 0.0546 0.0354

512 0.0469 0.0508 0.0521 0.0549 0.0563 0.0381

1024 0.0531 0.0509 0.0521 0.0524 0.0506 0.0374

GARCH parameters: α0 = 0.745, α1 = 0.250, and (α1 + γ1) = 0.255

64 0.054 0.0506 0.0511 0.0811 0.0891 0.0398

128 0.0526 0.0593 0.0500 0.0632 0.0618 0.0341

256 0.0539 0.0505 0.0509 0.0622 0.0589 0.0315

512 0.0509 0.0503 0.0492 0.0548 0.0492 0.0354

1024 0.0481 0.0508 0.0506 0.0482 0.0512 0.0366

GARCH parameters: α0 = 0.051, α1 = 0.250, and (α1 + γ1) = 0.490

64 0.0551 0.0557 0.0550 0.0807 0.0859 0.0396

128 0.0526 0.0572 0.0512 0.0713 0.0642 0.0406

256 0.0556 0.0551 0.0539 0.0587 0.059 0.0371

512 0.0553 0.0506 0.0514 0.0557 0.0554 0.0383

1024 0.0527 0.0484 0.0517 0.0522 0.0532 0.0332
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Table A.3: Test sizes for series with GARCH(1,1) errors with GED(ν =
1.5) conditional distribution

T VR-DWT VR-MODWT ADF DF-GLS ERS-PT PP

GARCH parameters: α0 = 0.260, α1 = 0.250, and (α1 + γ1) = 0.740

64 0.0561 0.0577 0.0626 0.0878 0.0970 0.0411

128 0.0552 0.0584 0.0578 0.0728 0.0707 0.0444

256 0.0560 0.0603 0.0598 0.0610 0.0619 0.0415

512 0.0563 0.0599 0.0555 0.0553 0.0579 0.0390

1024 0.0567 0.0544 0.0557 0.0529 0.0532 0.0359

GARCH parameters: α0 = 0.010, α1 = 0.250, and (α1 + γ1) = 0.990

64 0.0532 0.0538 0.0769 0.1015 0.1058 0.0615

128 0.0569 0.0586 0.0897 0.0857 0.0869 0.0657

256 0.0545 0.0586 0.0938 0.0826 0.0868 0.0705

512 0.0516 0.0582 0.0955 0.0818 0.0771 0.0721

1024 0.0571 0.0546 0.0931 0.0779 0.0723 0.0740

GARCH parameters: α0 = 0.495, α1 = 0.500, and (α1 + γ1) = 0.505

64 0.0576 0.0534 0.0556 0.0723 0.0792 0.0442

128 0.0507 0.0556 0.0531 0.0638 0.0603 0.0401

256 0.0532 0.0507 0.0497 0.0537 0.0571 0.0366

512 0.0489 0.0520 0.0511 0.0552 0.0505 0.0391

1024 0.0525 0.0614 0.0474 0.0507 0.0461 0.0352

GARCH parameters: α0 = 0.260, α1 = 0.500, and (α1 + γ1) = 0.740

64 0.0560 0.0510 0.0603 0.0855 0.0920 0.0513

128 0.0557 0.0539 0.0589 0.0706 0.0710 0.0488
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Table A.3: Test sizes for series with GARCH(1,1) errors with GED(ν =
1.5) conditional distribution

T VR-DWT VR-MODWT ADF DF-GLS ERS-PT PP

256 0.0524 0.0508 0.0599 0.0623 0.0612 0.0456

512 0.0589 0.0572 0.0569 0.0500 0.0540 0.0422

1024 0.0522 0.0643 0.0561 0.0541 0.0498 0.0417

GARCH parameters: α0 = 0.010, α1 = 0.500, and (α1 + γ1) = 0.990

64 0.0542 0.0531 0.0782 0.0957 0.1031 0.0639

128 0.0468 0.0474 0.0851 0.0877 0.0829 0.0667

256 0.0506 0.0497 0.0881 0.0774 0.0778 0.0766

512 0.0494 0.0499 0.0909 0.0718 0.0737 0.0718

1024 0.0422 0.0492 0.0850 0.0664 0.0690 0.0702

GARCH parameters: α0 = 0.245, α1 = 0.750, and (α1 + γ1) = 0.755

64 0.0512 0.0463 0.0563 0.0720 0.0824 0.0537

128 0.0539 0.0530 0.0555 0.0675 0.0657 0.0505

256 0.0493 0.0534 0.0559 0.0562 0.0601 0.0462

512 0.0543 0.0474 0.0555 0.0525 0.0532 0.0478

1024 0.0483 0.0522 0.0558 0.0493 0.0501 0.0429

GARCH parameters: α0 = 0.010, α1 = 0.750, and (α1 + γ1) = 0.990

64 0.0525 0.0451 0.0756 0.0919 0.1014 0.0624

128 0.0481 0.0546 0.0721 0.0771 0.0766 0.0655

256 0.0437 0.0439 0.0776 0.0689 0.0688 0.0681

512 0.0415 0.0434 0.0730 0.0616 0.0583 0.0644

1024 0.0443 0.0441 0.0738 0.0600 0.0621 0.0622
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Table A.3: Test sizes for series with GARCH(1,1) errors with GED(ν =
1.5) conditional distribution

T VR-DWT VR-MODWT ADF DF-GLS ERS-PT PP

GARCH parameters: α0 = 0.005, α1 = 0.990, and (α1 + γ1) = 0.995

64 0.0452 0.0441 0.0658 0.0733 0.0872 0.0593

128 0.0435 0.0452 0.0645 0.0661 0.0671 0.0564

256 0.0432 0.0453 0.0654 0.0581 0.0603 0.0620

512 0.0456 0.0400 0.0661 0.0542 0.0530 0.0556

1024 0.0441 0.0475 0.0626 0.0523 0.0495 0.0581
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A.3 Power Curves for selected DGPs

Figure A.1: N(0,1); α0 = 0.01; α1 = 0.5; (α1 + γ1) = 0.99
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Figure A.2: GED (ν = 1.5); α0 = 0.01; α1 = 0.5; (α1 + γ1) = 0.99
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Figure A.3: t(4); α0 = 0.01; α1 = 0.5; (α1 + γ1) = 0.99
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Figure A.4: N(0,1); α0 = 0.01; α1 = 0.75; (α1 + γ1) = 0.99
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Figure A.5: GED (ν = 1.5); α0 = 0.01; α1 = 0.75; (α1 + γ1) = 0.99
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Figure A.6: t(4); α0 = 0.01; α1 = 0.75; (α1 + γ1) = 0.99
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Figure A.7: N(0,1); α0 = 0.005; α1 = 0.99; (α1 + γ1) = 0.995
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Figure A.8: GED (ν = 1.5); α0 = 0.005; α1 = 0.99 (α1 + γ1) = 0.995
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Figure A.9: t(4); α0 = 0.005; α1 = 0.99; (α1 + γ1) = 0.995
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