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Abstract

We analyse the role of cointegration for the problem of hedging an asset using
other assets, when the prices are generated by a Cointegrated Vector Autoregressive
model (CVAR). We first note that if the price of the asset is nonstationary, the risk
of keeping the asset diverges. We then derive the minimum variance hedging portfolio
as a function of the holding period, h, and show that it approaches a cointegrating
relation for large h, thereby giving a serious reduction in the risk. We then take into
account the expected return and find the portfolio that maximizes the Sharpe ratio.
We show that it also approaches a cointegration portfolio, with weights depending on
the price of the portfolio. We ilustrate the finding with a data set of electricity prices
which are hedged by fuel prices. The main conclusion of the paper is that for optimal
hedging, one should exploit the cointegrating properties for long horizons, but for short
horizons more weight should be put on remaining part of the dynamics.
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1 Introduction
In this paper we consider the situation that there are given n tradable assets with prices
yt = (y1t, . . . , ynt)

′, and we construct a portfolio as a linear combination η = (η1, . . . , ηn)′ of
the assets with value at time t, η′yt =

∑n
i=1 ηiyit. A positive coeffi cient, ηi > 0, indicates

that we buy ηi units of asset i, and a negative coeffi cient ηj < 0 means that we sell |ηj| units
of asset j. We use the terminology that we have taken a long position in asset i and a short
position in asset j.We define the prediction variance Σh = V ar(yt+h|It), the variance of yt+h
given the information in the process up to time t, It = σ(ys, s ≤ t), and measure the risk of
a portfolio, η, at time t+ h as V ar(η′yt+h|It) = η′Σhη.
The simplest example of what we want to analyse is the case of two tradeable assets. If we

hold one unit of asset 1, we have the portfolio η = (1, 0)′. The risk at time t+h is Σh11, which,
for nonstationary prices, will diverge with h. By selling β units of the second asset y2t, we
have the portfolio η = (1,−β)′, with risk at time t+h given by Σh11+β2Σh22−2βΣh21. This
clearly minimized for β = Σh12/Σh22 giving the minimal risk Σh11 − Σ2

h12/Σh22 which is less
than the unhedged risk of the first asset Σh11. We show that if there is cointegration among
the prices, we can exploit this and show that for long horizons, it is a cointegrating relation
that gives the best portfolios. In general we have more than two tradable assets, and we
maintain throughout the idea that we have one unit of asset 1 and want to invest in y2t, . . . , ynt
in order to offset the risk in asset one, as measured by the conditional variance, if we hold
the portfolio for h periods. More precisely we want to choose a portfolio η = (1, η2, . . . , ηn)′

in such a way that V ar(η′(yt+h − yt)|It) = η′Σhη, is as small as possible. In this context we
call asset one the hedged asset and the assets (2, . . . , n) the hedging assets. The coeffi cients
η2, . . . , ηn are called hedging ratios and η is the hedging portfolio. Finally we shall use the
term optimal hedging portfolio orminimum variance portfolio for the portfolio minimizing the
risk of η′(yt+h−yt), among all portfolios normalized on η1 = 1. Thus, hedging only considers
risk and not the expected return of the investment. To discuss this problem, we define µh =
E(yt+h − yt|It), such that the expected return of η is η′µh = E(η′(yt+h − yt)|It). To balance
the expected return by the risk we consider the (squared) Sharpe ratio, Sharpe (1966),
which takes into account both expected return and risk by considering S2h = (η′µh)

2/η′Σhη.
The portfolio maximizing the Sharpe ratio is called the optimal Sharpe portfolio. If we
can normalize on the first coordinate we can use the optimal Sharp portfolio as a hedging
portfolios, as we shall do in the analysis in Section 5.
The idea of minimum variance portfolio dates back to the seminal paper by Markowitz

(1952) and has since been explored and extended in both financial and econometric literature,
see for instance Grinold and Kahn (1999).
In general, the hedging methods can be divided in two classes: static and dynamic

methods. The static hedging techniques assume that the hedging portfolio is selected, given
information available in period t, and remains unchanged during the entire holding period
t, . . . , t + h. This is opposed to the dynamic hedging methods which allows for rebalancing
the portfolio during the holding period.
We are only concerned with static hedging, and our contribution is to analyse the prop-

erties of the optimal portfolios under the assumption that the asset prices are driven by
a Cointegrated Vector Autoregressive model (CVAR). We start with a simple example of
a cointegrating regression model, which relates the hedged asset to the hedging assets via
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a cointegrating relation, and the hedges are strongly exogenous and modelled by random
walks. It must be pointed out that the assumption that the data is generated by a CVAR is
not an assumption that holds for all assets and all frequencies of data. It has to be checked
carefully using the available data. Cointegration is used in pairs trading, see

"If the long and short components fluctuate with common nonstationary factors,
then the prices of the component portfolios would be co-integrated and the pairs
trading strategy would be expected to work." (Gatev, Goetzmann, Rouwe 2006,
p. 801)

and the contribution in this paper is a framework and some results, that can be used if
the assumptions of the CVAR are satisfied.
We then turn to the general CVAR, and find an expression for the optimal hedging

portfolio, and the optimal Sharpe ratio portfolio as functions of the parameters of the model.
There is no simple relation between the expected returns in the two situations, except when
the assets are strongly exogenous, in which case the returns are the same.
Our main conclusion is that for large h both the optimal hedging portfolio and the

optimal Sharpe portfolio converge to cointegrating relations, which we find explicitly and
characterize as the minimum variance stationary portfolio normalized on η1 = 1, and as the
limit of the Sharpe optimal stationary portfolio respectively. If r = 1 they are equal when
normalized on η1 = 1. As an illustration of the results we analyse a set of data on prices of
futures of electricity and fuels in the Netherlands.
Thus a conclusion is that cointegration plays an important role in hedging. It allows for

the possibility that the hedging portfolio has a bounded risk, as opposed to the unhedged
risk. More importantly, however, is that the results show that for moderate horizons, it is
important not to use the cointegrating portfolio, but to use the optimal hedging portfolio
which interpolates between the short and long horizons. All proofs are given in the Appendix.

2 A simple example of hedging cointegrated variables
This section analyses a simple model, where the hedged asset is cointegrated with the hedging
assets that are modelled as random walks. We compare the optimal hedging portfolio with
the unhedged position in the first asset, and show how we find a substantial reduction in
risk, due to the nonstationarity of the asset prices.

2.1 The cointegrating regression model

We first consider a simple model for the variables in the example in Section 5. This model is
too simple to describe the data, which we analyse in Section 5, and is used here only because
the derivations are simpler in this case. Thus pt is the price of a future on electricity and
there are three "fuels", coal, gas and the price of CO2 permits collected in y2t. We consider
a cointegrating regression model, where the endogenous variable pt cointegrates with coal,
gas, and CO2 which are modelled as n− 1 = 3 exogenous random walks, y2t ∈ Rn−1,

y1t = β′y2t + u1t,

y2t = y2,t−1 + u2t,
(1)
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where ut = (u1t, u
′
2t)
′ are independent identically distributed (i.i.d.) random errors with

mean zero and variance split accordingly

Ψ = V ar(ut) =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
.

The stylized story is that we hold one unit of electricity and want to hedge by going short in
the fuels in the hope of reducing the risk associated with the prices. We define the expected
return and the prediction variance h periods ahead

µh = E(yt+h − yt|It) =

(
µh1
µh2

)
,

Σh = V ar(yt+h|It) =

(
Σh11 Σh12

Σh21 Σh22

)
.

In fact the producer of electricity is doing the opposite, see section 5, by going short in
electricity and long in the fuels, but that is just a question of a change of sign of the
portfolio.

2.2 The hedging problem and its solution in cointegrating regression

We want to hedge one unit of the first asset by going short in the portfolio with value β′hy2t
and consider therefore the portfolio ηh = (1,−βh)′ with value

η′yt = y1t − β′hy2t. (2)

In portfolio hedging, a long position in asset one, is traditionally hedged with a short position
in another set of assets. Thus the sign in front of the hedging ratios, βh, indicates the market
convention regarding hedging practice. The optimal portfolio is selected in period t and it
is held up to period t+ h.
We want to determine βh to minimizes the risk measured by η′Σhη = V ar(η′hyt+h|It),

that is, we want to solve

min
βh

V ar(η′hyt+h|It) = min
βh

(Σh11 + β′hΣh22βh − β′hΣh21 − Σh12βh). (3)

This is solved by the best linear predictor of y1,t+h given y2,t+h and It, which is β∗h = Σ−1h22Σh21.
Therefore the optimal hedging portfolio becomes

η∗h =

(
1

−Σ−1h22Σh21

)
, (4)

with expected return and risk

η∗′h µh = µh1 − Σ−1h22Σh21µh2,

η∗′h Σhη
∗
h = Σh11 − Σh12Σ

−1
h22Σh21.

For the regression model (1) we can find explicit expressions for these quantities.
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Theorem 1 Let yt ∈ Rn, t = 1, . . . , T, be given by the regression model (1), and let η∗h be
the optimal hedging portfolio for horizon h, see (4).
1. The expected return and risk are

µh =

(
−(y1t − β′y2t)

y2t

)
(5)

Σh =

(
hβ′Ψ22β + β′Ψ21 + Ψ12β + Ψ11 hβ′Ψ22 + Ψ12

hΨ22β + Ψ21 hΨ22

)
(6)

2. The optimal hedging portfolio is

η∗h =

(
1

−(β + Ψ−122 Ψ21)h
−1 − β(1− h−1)

)
, (7)

which has expected return and risk

η∗′h µh = −(y1t − β′y2t), (8)

η∗′h Σhη
∗
h = Ψ11 − h−1Ψ12Ψ

−1
22 Ψ21. (9)

In order to interpret the consequences of these results, note that holding the first asset
for h periods leads to a diverging risk

V ar(y1,t+h|It) = Ψ11 + hβ′Ψ22β + Ψ12β + β′Ψ21 →∞,

whereas using the optimal hedging portfolio, we find the increasing but converging risk

V ar(η∗′h y1,t+h|It) = Ψ11 − h−1Ψ12Ψ
−1
22 Ψ21 → Ψ11.

Thus for large h one obtains a substantial reduction in risk by hedging. Even for h = 1, the
risk associated with not hedging is Ψ11 + β′Ψ22β + Ψ12β + β′Ψ21, which is larger than the
optimal risk when hedging: Ψ11 −Ψ12Ψ

−1
22 Ψ21.

The expected return of holding the first asset is the same as the expected return of the
hedged asset, so in this case it is enough to compare the risks.
Two assets modelled by correlated random walks are substitutes. In the extreme case

that two assets are fully correlated, having only one of them as hedging asset, is enough for
an optimal portfolio. The expression for the risk Ψ11 − h−1Ψ12Ψ

−1
22 Ψ21 shows that the more

hedging assets are used, the smaller is the risk.

3 Optimal hedging in the CVAR
The analysis of the model, where the hedging assets are exogenous, is now generalized to
the general cointegration model, see Johansen (1996), where we use the error correction
formulation, which allows general adjustment coeffi cients as well as a constant term in the
cointegrating space, allowing for nonzero expectation of the cointegrating relations. In the
case of n − 1 exogenous random walks and r = 1, see the regression (1), the optimizing
portfolio approaches the only cointegrating vector. In the general case where r ≥ 1, we
show that the optimal portfolio converge to η∗stat, the minimum variance stationary portfolio
normalized on the first asset.
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This result is formulated in Theorem 4 for the cointegrated VAR model with two lags

∆yt = α(γ′yt−1 − ξ) + Φ∆yt−1 + εt. (10)

It is only a question of a more elaborate notation to handle the case of more lags. For a
lag k model, we can express the model as a lag one model for the stacked process ỹt =
(y′t, . . . y

′
t−k+1, )

′, using the companion form, see Johansen (1996) and Hansen (2006). The
portfolios we investigate, however, have the form η̃′ỹt = (η′, 0′n(k−1))ỹt = η′yt, where 0n(k−1) =

(0, . . . , 0)′ ∈ Rn(k−1). Thus we are not optimizing over all linear combinations of ỹt, but only
linear combinations of the first n coordinates. This requires a slightly modified form of the
optimal portfolio.
The prediction variance Σh = V ar(yt+h|It) can be calculated recursively from the esti-

mated parameters, as in Lütkepohl (2005, pp. 259-260), by defining the matrices Φ0 = In
and Φ1 = In +αγ′+ Φ and Φi = Φi−1(In +αγ′+ Φ)−Φi−2Φ, i = 2, 3, . . . Then the variance
is given by

Σh = Σh−1 + Φh−1ΩΦ′h−1,

but we need a more explicit expression for the detailed analysis below. The first result is
formulated for the lag one model to simplyfy the notation.

Theorem 2 Let yt ∈ Rn, t = 1, . . . , T be given by

∆yt = α(γ′yt−1 − ξ) + εt, (11)

where εt are i.i.d. (0,Ω) and α and γ are n×r matrices. We assume the usual I(1) conditions,
see Johansen (1996, Theorem 4.2). This implies that the eigenvalues of ρ = Ir + γ′α have
absolute value less than 1, such that γ′yt − ξ is stationary with mean zero. We define γ⊥ as
an n× (n− r) matrix of rank n− r, such that γ′γ⊥ = 0, and similarly for α⊥, and use them
to construct C = γ⊥(α′⊥γ⊥)−1α′⊥. We then find the conditional mean and variance

µh = E(yt+h − yt|It) = α(γ′α)−1(ρh − 1)(γ′yt − ξ), (12)

Σh = V ar(yt+h − yt|It) =
h−1∑
i=0

[C + α(γ′α)−1ρiγ′]Ω[C ′ + γρ′i(α′γ)−1α′]. (13)

It follows that the optimal hedging portfolio is

η∗h =

(
1

−Σ−1h22Σh21

)
. (14)

Because we are interested in hedging the first asset and investigate the influence of
cointegration, we assume that there exists a cointegrating relation of the form γ′1yt = y1t +
β′1y2t. By taking linear combinations of the cointegrating relations, we can eliminate the first
asset from the remaining relations and assume, without loss of generality, that

γ = (γ1, γ2) =

(
1 0
β1 β2

)
, (15)
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for γ1 ∈ Rn and γ2 ∈ Rn×(r−1). We use the notation for mean and variance of the stationary
variables γ′yt

ξ = E(γ′yt) = E

(
y1t + β′1y2t
β′2y2t

)
=

(
ξ1
ξ2

)
, (16)

Γ = V ar(γ′yt) = V ar

(
y1t + β′1y2t
β′2y2t

)
=

(
Γ11 Γ12
Γ21 Γ22

)
. (17)

If the portfolio is chosen as a cointegrating relation, we find the optimal portfolio in the
next Theorem.

Theorem 3 Under the assumptions of Theorem 2 and if the cointegrating relations are nor-
malized as in (15), then the variance of a stationary portfolio η′yt = y1t− β′y2t is minimized
for β ∈ Rn−1 by the optimal hedging portfolio

η∗stat =

(
1

β1 − β2Γ−122 Γ21

)
= γ

(
1

−Γ−122 Γ21

)
, (18)

with expected return and risk

E(η∗′statyt) = ξ1 − Γ12Γ
−1
22 ξ2, (19)

V ar(η∗′statyt) = Γ11 − Γ12Γ
−1
22 Γ21. (20)

The coeffi cient β∗stat = β1 − β2Γ−122 Γ21 is the probability limit of the estimated coeffi cient
in a regression of y1t on y2t.

Note that with the parametrization (15), the parameter β1 is not identified, because we
could choose the parameters,

γκ = γκ =

(
1 0
β1 β2

)(
1 0
κ1 κ2

)
=

(
1 0

β1 + β2κ1 β2κ2

)
,

and ακ = ακ′−1 for which αγ′ = ακγ
′
κ, and that would not change the cointegrating space

and therefore not the model (11), as long as κ has full rank r. The result in (18), however,
is invariant to this choice of parametrization, because if γκ were the cointegrating relations,
then using the expression in (18), we would find

η∗κ =

(
1

β1 + β2κ1 − β2κ2(κ′2Γ22κ2)−1κ′2(Γ21 + Γ22κ1)

)
=

(
1

β1 − β2Γ−122 Γ21

)
.

Thus, the result (18) does not depend on the parametrization of the cointegrating space.
We next formulate the main result for the hedging problem in the CVAR.

Theorem 4 Let yt be given by the CVAR (10) and assume usual I(1) conditions, see Jo-
hansen (1996, Theorem 4.2), such that yt is I(1) and γ′yt is stationary with mean ξ.
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1. If h = 1, we find Σ1 = Ω, µ1 = α(γ′yt−1 − ξ) + Φ∆yt−1 and the optimal hedging
portfolio is η∗′1 = (1,−Ω12Ω

−1
22 ), which has mean return and risk

η∗′1 µ1 = (1,−Ω12Ω
−1
22 )(α(γ′yt − ξ) + Φ∆yt), (21)

η∗′1 Σ1η
∗
1 = Ω11 − Ω12Ω

−1
22 Ω21. (22)

2. If h→∞, we find
η∗h → η∗stat = γ

(
1

−Γ−122 Γ21

)
, (23)

and the limits of mean return and risk are

η∗′h µh → −(1,−Γ12Γ
−1
22 )(γ′yt − ξ) = −(η∗′statyt − E(η∗′statyt)), (24)

η∗′h Σhη
∗
h → Γ11 − Γ12Γ

−1
22 Γ21 = V ar(η∗′statyt). (25)

The interpretation of these results is the following. For h = 1, the optimal portfolio
depends only on the error variance Ω, and cointegration plays no role. The minimal variance
is Ω11 − Ω12Ω

−1
22 Ω21 < Ω11, which is the variance of the unhedged asset. For h→∞ we find

that the limit of the optimal portfolio is the cointegrating relation, which we would estimate
by regression of y1t on y2t, that is η∗stat. For any h we find the risk of the optimal portfolio is

Σh11 − Σh12Σ
−1
h22Σh21 < Σh11,

which is the risk of the unhedged portfolio, which diverges to infinity if the price of asset one
is nonstationary, whereas the risk of the optimal portfolio stay bounded, so a lot is gained
by hedging. The mean return of the unhedged asset and the optimal hedging portfolio are,
for en1 = (1, 0′2n−1)

′ ∈ R2n,

E(y1,t+h − y1t|It) = e′n1α̃(γ̃′α̃)−1(ρ̃h − 1)(γ̃′ỹt − ξ̃),
η∗′h µh = (1,−Σh12Σ

−1
h22, 0

′
n)α̃(γ̃′α̃)−1(ρ̃h − 1)(γ̃′ỹt − ξ̃).

Thus the risk is reduced by Σh12Σ
−1
h22Σh21 > 0, and the mean return is changed, but not

necessarily increased, by

−Σh12Σ
−1
h22e

′
n2α̃(γ̃′α̃)−1(ρ̃h − 1)(γ̃′ỹt − ξ̃),

where e′n2 = (0n−1, In−1, 0(n−1)×n). Note that(
e′n1
e′n2

)
= (In, 0n×n)

If in particular e′n2α̃ = (α2,Φ2) = 0, then y2t is strongly exogenous, as in model (1) and the
mean return is not changed, and only risk need to be taken into account.
In the next section we analyse the balance between expected return and risk using the

Sharpe ratio.
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4 Optimizing the Sharpe ratio for the CVAR
We first derive the well know result for the portfolio optimizing the Sharpe ratio, see for
instance Gourieroux and Jasiak (2001 pp. 74—76). We define the (squared) Sharpe ratio
after h periods as

Sh(η) =
[E{η′(yt+h − yt)|It}]2
V ar(η′(yt+h − yt)|It)

=
(η′µh)

2

η′Σhη
. (26)

Theorem 5 The portfolio which maximizes the Sharpe ratio after h periods is given, up to
a constant factor, by

η̄h = Σ−1h µh, (27)

and the maximal value is
Sh(η̄h) = µ′hΣ

−1
h µh. (28)

The optimal stationary portfolio ηh,stat = γ(γ′Σhγ)−1γ′µh, satisfies for h→∞

η̄h,stat → −γΓ−1(γ′yt − ξ) = η̄stat, (29)

say.

Note that the expected return of the portfolio optimizing the Sharpe ratio is equal to the
risk and given by

E{η̄′(yt+h − yt)|It} = η̄′µh = µ′hΣ
−1
h µh = V ar{η̄′(yt+h − yt)|It} > 0.

Thus, the mean and variance of the optimal portfolio are equal to the maximized value of
the squared Sharpe ratio and the positive expected return is positive.

In the following we analyse (27) and (28) further for assets that are driven by the coin-
tegration model with two lags, in order to investigate the role of the cointegrating relations.

Theorem 6 Under the assumption of Theorem 4, we find
1. For h = 1, the optimal Sharpe portfolio and its expected risk are

η̄1 = Ω−1(α(γ′yt − ξ) + Φ∆yt), (30)

η̄′1µ1 = η̄′1Σ1η̄1 = µ′1Σ
−1
1 µ1 = (α(γ′yt − ξ) + Φ∆yt)

′Ω−1(α(γ′yt − ξ) + Φ∆yt). (31)

2. For h→∞, the optimal Sharpe portfolio and its expected risk satisfy

η̄h → −γΓ−1(γ′yt − ξ) = η̄stat, (32)

η̄′hµh = η̄′hΣhη̄h = µ′hΣ
−1
h µh → (γ′yt − ξ)′Γ−1(γ′yt − ξ). (33)

Note that the optimal Sharpe portfolio for h = 1, is a combination of the columns of the
inverse error variance Ω with weights depending on the expected return after one period,
µ1 = E(∆yt+1|It). For large h the optimal portfolio approaches a cointegrating relation
with weights determined by the inverse variance of the cointegrating relations, and the
disequilibrium error γ′yt − ξ at the time of investment.
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5 Empirical example
Consider the situation that a producer of electricity enters an agreement to deliver to cus-
tomers two years from today one MWh of electricity. Therefore she/he sells to the customers,
today at the price pt, the right to having delivered one MWh of electricity in two years, that
is, a two year forward contract in electricity. The seller is worried about the risk due to
changing fuel prices and decides to hedge these risks by buying two year futures in the price
of fuels. The problem is which amounts, the hedge ratios, should be bought of the futures to
hedge optimally, in the sense of smallest variance, the risk due to the variation of fuel prices.
Note that instead of holding the first asset, we are selling it and buying the hedging assets,
but that is just a matter of a change of sign. A detailed analysis of some aspects of the
electricity market in Europe, using cointegration analysis, can be found in Bosco, Parisio,
Pelagatti, and Baldi (2010) and Mohammadi (2009).
Above we have developed a theory for this situation under the assumption that we have

a constant parameter model, which describes the data well and for which we can assume
that the model parameters remain fixed in the next h periods. The model describes the
cointegration relation between electricity and the fuels. We now want to apply this theory
to a set of data, and show how in this particular case, the optimal hedge ratios and its risk
change with h
We take Dutch electricity prices for trades for two year ahead forward contracts for

electricity, pt, and two year futures price for coalt, gast and CO2t (CO2 is the European
Emission Allowances for carbon dioxide) which are main determinants of the price of elec-
tricity, denoted fuels below. The data is from Datastream. We model these variables
yt = (pt, coalt, gast, CO2t)

′ using a cointegration model with two lags of the form

∆yt = α(β′yt−1 − ξ) + Φ∆yt−1 + εt,

εt, t = 1, . . . , T are independent identically distributed (0,Ω). Note that in order to interpret
a cointegrating relation as a portfolio, we model the prices, not the log prices. We summarize
the analysis as follows.
The time series of the data are presented in Figure 1. The measurements are taken on

the first trading day for each month January 2006 to April 2015, a total of 112 observations.
We estimate the model using the Gaussian maximum likelihood procedure, Johansen (1988),
and the calculations are performed using the software CATS in RATS, Dennis (2006).
We find that a model with two lags is a reasonable description of the data and we first

test for the number of cointegrating relations. The test for rank is given in Table 1 together
with the magnitude of roots of the companion matrix when r = 1. One finds as expected
three unit roots, and the remaining are well within the unit disc.
One can simplify the coeffi cients in α and β and find that there is a stationary relation

between electricity, gas and CO2 without a constant, and that only CO2 is significantly
adjusting to the disequilibrium error. The restrictions are tested by a χ2 test with 5 degrees
of freedom. There are three restrictions on α and one on β and one on the constant:

β′y = pt − 1.459
[t=−17.20]

gas− 1.500
[t=−10.95]

CO2,

α′ = (0, 0, 0, 0.163
[t=3.86]

),

LR test = 6.833 ∼ χ2(5) [p− value = 0.23].
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Figure 1: The four monthly series from January 2006 to April 2015

Test for cointegrating rank
r Eig.Value Trace Frac95 P-Value
0 0.248 60.135 53.945 0.012
1 0.123 28.785 35.070 0.210
2 0.097 14.391 20.164 0.270
3 0.028 3.151 9.142 0.562

8 abs(roots) of companion matrix for r = 1
1, 1, 1, 0.72, 0.24, 0.16, 0.08, 0.01

Table 1: The tests for rank indicate that r = 0 can be rejected and that r = 1 looks
acceptable. The absolute value of the roots of the companion matrix are three unit roots
and the next largest is 0.72

The estimated cointegrating relation is plotted in Figure 2 and the optimal β∗h, is plotted
in Figure 3, and the risk of the optimal portfolio compared to the stationary portfolio is
given in Figure 4. Note that using the cointegrating relation as a hedging portfolio has a
much greater risk than the optimal hedging portfolio. The unhedged risk grows linearly from
15.14 (h = 1) to 420.74 (h = 24), whereas the optimally hedged risk grows from 3.00 (h = 1)
but stays below the limit Γ = 20.49.
We have illustrated the findings with some plots in Figure 5. The example has the special

feature that r = 1, so we get some simplification. Because η̄h1 → −γ′yt/Γ,we find that the
optimal portfolios η̄h/η̄h1 and η∗ converge to γ. The corresponding expected returns η̄′hµh/η̄h1
and η∗′h µh converge to −γ′yt and the risks η̄′hΣhη̄h/η̄

2
h1 and η

∗′Σhη
∗ converge to Γ = 20.49.

In Figure 5 panel a and b we have chosen t = 2006 : 2 and plotted, in panel a, the risk
and expected return of the optimal hedging portfolio. They converge towards their limits,
η∗′h Σhη

∗
h → Γ = 20.49 and η∗′h µh → −γ′yt = 20.26, see (24-25). The same holds for the

optimal Sharpe portfolio in panel b, see (31-32), when normalized by η̄h1, the coeffi cient to
pt, and it has for general h a higher return and a larger risk.
In panel c and panel d we have chosen t = 2010 : 2, where γ′yt = 2.57 has the opposite

sign, and we plot the same curves. We note that again the optimal Sharpe risk is larger
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The cointegrating relation
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Figure 2: The cointegrating relation pt− 1.459gast− 1.550CO2t only shows significant coef-
fcients for gas and CO2. The adjustment coeffi cents to the changes in p, coal, gas, CO2 are
α′ = (0, 0, 0, 0.163), so that only CO2 is adjusting to disequilibrium.

Optimal Hedge Ratios
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Figure 3: For h = 1, . . . , 24, we plot the optimal hedge ratios β∗h = (β1h, β2h, β3h)
′ for

the estimated model. It is seen how the hedge ratios converge to the coeffi cients of the
cointegrating relation (β1, β2, β3) = (0, 1.459, 1.550) given as the dotted lines.
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Risk of stationary and optimal portfolio
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Figure 4: We plot the risk of the stationary portfolio V ar(γ′yt+h|It) = γ′Σhγ, (– —) which
converges to Γ with an exponential rate, and the optimal risk V ar(η∗′h yt+h|It) = η∗′h Σhη

∗
h,

(· · · · · · ) which converges to Γ = 20.49 like h−1. The unhedged risk (not plotted) for asset
one is Σh11 ≈ 15.14 + 16.9(h− 1), which goes from 15.14 to 420.74 for h = 24.

Expected return and risk
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Figure 5: The expected return and risk of the optimal hedging portfolio and the optimal
Sharpe portfolio for two different dates, plotted for horizon h = 1, . . . , 24.
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than the optimal hedging risk, but the expected returns are both negative now. The optimal
Sharpe risk is larger than 25 for h ≤ 14, and therefore truncated in the plot.
The conclusion of this is, that if we want to buy one unit of electricity and hedge using

the fuels, then, if we start on February 2006 (where γ′yt = −20.26), we can expect a positive
return which converges to 20.26, and we can use the optimal Sharpe portfolio which has a
higher expected return and a higher risk but the same limit. Thus, if the stationary relation
takes a negative value at the time of investment, it pays to invest.
If, however, we start in February 2010 (where γ′yt = 2.57) the optimal hedging portfolio

has a much smaller risk than the unhedged portfolio, but we can expect a negative return
as the price paid for getting rid of risk. The risk of the optimal Sharpe portfolio is larger
than 25 for h ≤ 14.
If, however, we want to go short in electricity, as the producer in the example above, then

we have to change the sign of the portfolio, which leaves the risk the same but changes the
sign of the expected return. Thus starting in February 2006 will imply a negative expected
risk for the electricity producer and it would be better to start February 2010.
In summary. If γ′yt < 0 it pays to go long in electricity, and if γ′yt > 0 it pays to go

short. Thus the electricity producer should sell the future in electricity in a month where
pt − 1.459gast − 1.550CO2t > 0.

6 Conclusion
We have analysed the role of cointegration for hedging under the assumption that asset prices
are driven by a CVAR. We have found the optimal hedging portfolio and optimal Sharpe
ratio portfolio and compare with the unhedged portfolio for horizon h.
We find that, due to the nonstationarity of the asset prices, there is a substantial gain

in risk by hedging, especially for longer horizons. There is no simple comparison between
the expected return of the hedged and unhedged portfolio, except in the special situation
of strongly exogenous hedging assets. Thus the main advantage of hedging is the reduc-
tion of the risk. The minimum variance optimal portfolio does not take into account the
expected return, and we therefore also analyse the optimal Sharpe portfolio, which balances
the expected return and risk.
For long horizons, the optimal portfolio in both cases approaches a cointegrating relation,

which we find explicitly together with a formula for the expected return and risk.
If the first asset enters the optimal Sharpe portfolio with a positive coeffi cient, we can

choose the portfolio as a hedging portfolio by normalizing on y1t, and we have found a good
balance between mean return and risk for the hedging problem. If, however, the coeffi cient
to y1t is negative, the corresponding hedging portfolio, normalized on y1, will give the largest
negative expected return in relation to its risk.
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7 Appendix
Proof of Theorem 1. We find from model equation (1), that y2t is a random walk in n− 1
dimensions and that can be used to find y1,t+h and y2,t+h as function of y1t, y2t and the errors

y2,t+h = y2t + u2,t+1 + · · ·+ u2,t+h,

y1,t+h = β′y2,t+h + u1,t+h = β′y2t + β′
h−1∑
i=0

u2,t+h−i + u1,t+h.

We find the expected return and prediction variance in (5) and (6). The best linear predictor
is β∗h = (hΨ22)

−1(hΨ22β+Ψ21) = β+h−1Ψ−122 Ψ21.We note in particular that for h = 1, β∗1 =
β+Ψ−122 Ψ21 and β∗h → β, h→∞, and that we can write β+h−1Ψ−122 Ψ21 = β∗1h

−1+(1−h−1)β,
which proves (7), (8) and (9).

Proof of Theorem 2. For model (10) the cointegrating relation γ′yt is an r−dimensional
AR(1) process with autoregressive r × r parameter ρ = Ir + γ′α, and γ′yt is given by the
equation

γ′yt − ξ = ρ(γ′yt−1 − ξ) + γ′εt.

By forward recursion from i = t+ 1, . . . , t+ h, we find that α′⊥yt is a random walk, and
that

α′⊥yt+h = α′⊥yt +
h−1∑
i=0

α′⊥εt+i−1,

γ′yt+h − ξ = ρh(γ′yt − ξ) +
h−1∑
i=0

ρiγ′εt+h−1.
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We combine these results using the identity

In = γ⊥(α′⊥γ⊥)−1α′⊥ + α(γ′α)−1γ′ = C + α(γ′α)−1γ′.

This gives

yt+h − yt = Cyt+h + α(γ′α)−1γ′yt+h − yt

= C
h−1∑
i=0

εt+h−i + Cyt + α(γ′α)−1(ξ + ρh(γ′yt − ξ) +

h−1∑
i=0

ρiγ′εt+h−1)− yt

=

h−1∑
i=0

(C + α(γ′α)−1ρiγ′)εt+h−i + α(γ′α)−1(ρh − 1)(γ′yt − ξ).

From this we can find the conditional mean (12) and variance (13), and the optimal hedging
portfolio, using (14).

Proof of Theorem 3. A cointegrating vector η′ = (1,−β′)′ is a linear combination of the
vectors in γ, see (15), and therefore there exists a vector (1, κ′)′ ∈ Rr such that

η =

(
1
−β

)
= γ

(
1
κ

)
=

(
1
β1

)
+

(
0
β2

)
κ =

(
1

β1 + β2κ

)
,

that is, η′yt = y1t +β′1y2t +κ′β′2y2t. The variance of this is Γ11 +κ′Γ21 + Γ12κ+κ′Γ22κ, which
is minimized for

κ∗ = −Γ−122 Γ21,

giving the optimal cointegrating portfolio (18) with mean and variance as given in (19) and
(20).
Regressing y1t on y2t we find β̂, which satisfies

β̂ − β∗stat = (
n∑
t=1

y2ty
′
2t)
−1

n∑
t=1

y2t(y1t − y′2tβ∗stat).

We then analyse the matrices by pre and post multiplying by BT = (T−1/2β2, T
−1β2⊥)

and find, using the rules that product moments of I(1) variables are OP (T 2) and product
moments of an I(1) variable and an I(0) variable is OP (T ), that

B′T

n∑
t=1

y2ty
′
2tBT = OP (1), T−1

n∑
t=1

β′2⊥y2t(y1t − y′2tβ∗stat) = OP (1).

For details see Johansen (1996). Next we apply the law of large numbers for stationary
(ergodic) processes and find using the definition of β∗stat = β1 − β2Γ−122 Γ21 that

T−1
n∑
t=1

β′2y2t(y1t−y′2tβ∗stat) = T−1
n∑
t=1

β′2y2t(y1t−y′2tβ1+y′2tβ2Γ
−1
22 Γ21)

P→ Γ21−Γ22Γ
−1
22 Γ21 = 0.

This implies that because β′2y2t(y1t − y′2tβ∗stat) is a stationary mean zero process,
n∑
t=1

β′2y2t(y1t − y′2tβ∗stat) = OP (T 1/2).
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This means that, using B−1T = (T−1/2β̄2, T
−1β̄2⊥)′,(

T 1/2β̄′2(β̂ − β∗stat)
T β̄′2⊥(β̂ − β∗stat)

)
= B−1T (β̂−β∗stat) = (B′T

n∑
t=1

y2ty
′
2tBT )−1B′T

n∑
t=1

y2t(y1t−y′2tβ∗stat) = OP (1),

which implies that β̂ P→ β∗stat for n→∞.

Proof of Theorem 4. Proof of 1: We find from equation (10) that

µ1 = E(∆yt|It) = α(γ′yt − ξ) + Φ∆yt, Σ1 = V ar(∆yt|It) = Ω, β∗1 = Ω−122 Ω21,

which proves (21) and (22).
Proof of 2: The model with two lags (10) can be expressed in companion form as(

∆yt
∆yt−1

)
=

(
α Φ

0n×r In

)(
γ In

0n×r −In

)′(
yt−1
yt−2

)
+

(
−αξ + εt

0n

)
.

We express that as the lag one model

∆ỹt = α̃(γ̃′ỹt−1 − ξ̃) + ε̃t,

where

ỹt =

(
yt
yt−1

)
, α̃ =

(
α Φ

0n×r In

)
, γ̃ =

(
γ In

0n×r −In

)
,

ξ̃ =

(
ξ
0n

)
, ε̃t =

(
εt
0n

)
, Ω̃ =

(
Ω 0
0 0

)
.

We then find for C = γ⊥(α′⊥(In − Φ)γ⊥)−1α′⊥ the derived parameters,

α̃⊥ =

(
α⊥
−Φ′α⊥

)
, γ̃⊥ =

(
γ⊥
γ⊥

)
, C̃ =

(
C −ΦC
C −ΦC

)
, ρ̃ =

(
Ir + γ′α γ′Φ

α Φ

)
.

The results (12) and (13) hold for the process ỹt by adding a tilde on all parameters, and we
find

Σ̃h = hC̃Ω̃C̃ ′ + α̃(γ̃′α̃)−1(
h−1∑
i=0

ρ̃iγ̃′Ω̃γ̃ρ̃′i)(α̃, γ̃)−1α̃′ (34)

+ C̃Ω̃γ̃(

h−1∑
i=0

ρ̃′i)(α̃, γ̃)−1α̃′ + α̃(γ̃′α̃)−1(

h−1∑
i=0

ρ̃i)γ̃′Ω̃C̃ ′.

We note that for h→∞,

γ̃′Σ̃hγ̃ =
h−1∑
i=0

ρ̃iγ̃′Ω̃γ̃ρ̃′i → Γ̃ = V ar(γ̃′ỹt),

h−1∑
i=0

ρ̃i → −(ρ̃− Ir+n)−1 = −(γ̃′α̃)−1,

ρ̃h → 0,

17



and all converge exponentially fast, because the I(1) condition implies that the absolute
roots of the companion form are bounded by 1. We therefore replace all three by their limits
in the limit argument below. We introduce the matrices

Θ̃ = (γ̃′α̃)−1γ̃′(In, 0n×n)′Ωα⊥(α′⊥(In − Φ)γ⊥)−1,

Υ = (α′⊥(In − Φ)γ⊥)−1α′⊥Ωα⊥(γ′⊥(In − Φ′)α⊥)−1,

and find

(In, 0n×n)C̃Ω̃C̃ ′(In, 0n×n)′ = CΩC ′ = γ⊥Υγ′⊥,

(In, 0n×n)C̃Ω̃γ̃(α̃′γ̃)−2α̃′ = CΩ(In, 0n×n)γ̃(α̃′γ̃)−2α̃′ = γ⊥Θ̃′(α̃′γ̃)−1α̃′.

For µh = (In, 0n×n)µ̃h and Σh = (In, 0n×n)Σ̃h(In, 0n×n)′ we therefore get

µh = (In, 0n×n)α̃(γ̃′α̃)−1(ρ̃h − Ir+n)(γ̃′ỹt − ξ̃), (35)

Σh = hγ⊥Υγ′⊥ + (In, 0n×n)α̃(γ̃′α̃)−1Γ̃(α̃, γ̃)−1α̃′(In, 0n×n)′ (36)

− γ⊥Θ̃′(α̃′γ̃)−1α̃′(In, 0n×n)′ − (In, 0n×n)α̃(γ̃′α̃)−1Θ̃γ′⊥.

Next we introduce the notation

e′n1 = (1, 0′n−1, 0
′
n),

α̃′1 = e′n1α̃(γ̃′α̃)−1,

for the first unit vector in R2n, and the first row of the 2n × (r + n) matrix α̃(γ̃′α̃)−1. We
also need the next n− 1 rows of the matrix α̃(γ̃′α̃)−1, and define

e′n2 = (0n−1, In−1, 0(n−1)×n),

α̃′2 = e′n2α̃(γ̃′α̃)−1,

such that e′n2 consists of the n− 1 unit vectors in R2n, which picks out the rows 2, . . . , n of
α̃(γ̃′α̃)−1.
We use below the simplifying relations

α̃′1 + β′1α̃2 = (e′n1 + β′1e
′
n2)α̃(γ̃′α̃)−1 = γ̃′1α̃(γ̃′α̃)−1 = (1, 0′r−1+n) = e′r1, (37)

β′2α̃
′
2 = β′2e

′
n2α̃(γ̃′α̃)−1 = γ̃′2α̃(γ̃′α̃)−1 = (0r−1, Ir−1, 0(n−1)×n) = e′r2, (38)

say. We next want to derive expressions for Σh22,Σh21, and Σh11 and note that

γ =

(
1 0
β1 β2

)
, γ⊥ =

(
−β′1β2⊥
β2⊥

)
,

which implies that from (36) we find the expressions

Σh22 = hβ2⊥Υβ′2⊥ + α̃′2Γ̃α̃2 − β2⊥Θ̃′α̃2 − α̃′2Θ̃β′2⊥,
Σh21 = −nβ2⊥Υβ′2⊥β1 + α̃′2Γ̃α̃1 − β2⊥Θ̃′α̃1 + α̃′2Θ̃β

′
2⊥β1,

Σh11 = nβ′1β2⊥Υβ′2⊥β1 + α̃′1Γ̃α̃1 + β′1β2⊥Θ̃′α̃1 + α̃′1Θ̃β
′
2⊥β1.

18



We see from (36) that Σh22 tends to infinity, and in order to analyse Σh22, its inverse, and
the limit of the best linear predictor, β∗h = Σ−1h22Σh21, we introduce the normalizing matrices

Ah = (β2, h
−1β̄2⊥), A = (β2, β̄2⊥),

where β̄2⊥ = β2⊥(β′2⊥β2⊥)−1, such that β′2⊥β̄2⊥ = Ir−1, and find

β∗h = Σ−1h22Σh21 = A(A′hΣh22A)−1A′hΣh21.

Using β′2⊥β̄2⊥ = Ir−1 and β′2α̃
′
2Γ̃α̃2β2 = e′r2Γ̃er2 = V ar(β′2y2t) = Γ22, see (17), we find

A′hΣh22A =

(
Γ22 e′r2(Γ̃α̃2β̄2⊥ − Θ̃)
0 Υ

)
+O(h−1),

A′hΣh21 =

(
e′r2(Γ̃α̃1 + Θ̃β′2⊥β1)

−Υβ′2⊥β1

)
+O(h−1).

Hence for h→∞,

A(A′hΣh22A)−1A′hΣh21

→ (β2, β̄2⊥)

(
Γ−122 −Γ−122 e

′
r2(Γ̃α̃2β̄2⊥ − Θ̃)Υ−1

0 Υ−1

)(
e′r2(Γ̃α̃1 + Θ̃β′2⊥β1)

−Υβ′2⊥β1

)
= β2Γ

−1
22 e
′
r2(Γ̃α̃1 + Θ̃β′2⊥β1 + (Γ̃α̃2β̄2⊥ − Θ̃)β′2⊥β1)− β̄2⊥β′2⊥β1

= β2Γ
−1
22 e
′
r2Γ̃(α̃1 + α̃2β̄2⊥β

′
2⊥β1)− β̄2⊥β′2⊥β1.

In this expression we find, using (37) and (38),

α̃1 + α̃2β̄2⊥β
′
2⊥β1 = α̃1 + α̃2β1 − α̃2β2β̄′2β1 = en1 − en2β̄′2β1.

Inserting this we find the limit for h→∞,

A(A′hΣh22A)−1A′hΣh21 → β2Γ
−1
22 e
′
n2Γ̃(en1 − en2β̄′2β1)− β̄2⊥β′2⊥β1

= β2Γ
−1
22 Γ21 − β2Γ−122 Γ22β̄

′
2β1 − β̄2⊥β′2⊥β1 = β2Γ

−1
22 Γ21 − β1,

because β2β̄′2β1 + β̄2⊥β
′
2⊥β1 = β1. This proves (23).

Next we find for h→∞ the limiting expected return using γ′(In, 0n×n) = (Ir, 0n×n)γ̃′

η∗′µh = (1,−Σh12Σ
−1
h22, 0n×n)α̃(γ̃′α̃)−1(ρ̃h − Ir+n)(γ̃′ỹt − ξ̃) (39)

→ −(1, β′1 − Γ12Γ
−1
22 β

′
2, 0n×n)α̃(γ̃′α̃)−1(γ̃′ỹt − ξ̃)

= −(1,−Γ12Γ
−1
22 )(Ir, 0r×n)γ̃′α̃(γ̃′α̃)−1(γ̃′ỹt − ξ̃)

= −(1,−Γ12Γ
−1
22 )(γ′yt − ξ),

which proves (24).
From the above we find that the optimal portfolio satisfies

η∗h = η∗stat + rh,
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where rh = O(h−1), such that the minimal variance is

η∗′h Σhη
∗
h = (η∗stat + rh)

′Σh(η
∗
stat + rh) = η∗′statΣhη

∗
stat + 2r′hΣhη

∗
stat + r′hΣhrh.

Here the first term, using γ′(In, 0n×n) = (Ir, 0n×n)γ̃′, is

η∗′statΣhη
∗
stat = (1,−Γ12Γ

−1
22 )γ(In, 0n×n)α̃(γ̃′α̃)−1Γ̃(α̃, γ̃)−1α̃′(In, 0n×n)γ(1,−Γ12Γ

−1
22 )′

= (1,−Γ12Γ
−1
22 )

(
Γ11 Γ12
Γ21 Γ22

)
(1,−Γ12Γ

−1
22 )′ = Γ11 − Γ12Γ

−1
22 Γ21,

and the remaining terms are O(h−1) because η′cointΣh = O(h−1), which proves (25).

Proof of Theorem 5. Introducing a = Σ
1/2
h η and b = Σ

−1/2
h µh, we find η′µh = a′b and

sup
η

(η′µh)
2

η′Σhη
= b′b sup

a

(a′b)2

(a′a)(b′b)
≤ b′b = µ′hΣ

−1
h µh,

by the Cauchy-Schwarz inequality, where equality holds for a = cb or η = cΣ−1h µh. This
proves (27) and (28). See also Gourieroux and Jasiak (2001 pp. 74—76). If we restrict
η = γκ, κ ∈ Rr, then

(η′µh)
2

η′Σhη
=

(κ′γ′µh)
2

κ′γ′Σhγκ
,

such that for the optimal κ̄ we find η̄h,stat = γκ̄ = γ(γ′Σhγ)−1γ′µh. To find the limit we note
that from (35) we find for h→∞,

γ′µh = γ′(In, 0n×n)α̃(γ̃′α̃)−1(ρ̃h − Ir+n)(γ̃′ỹt − ξ̃)
= (Ir, 0n×n)γ̃′α̃(γ̃′α̃)−1(ρ̃h − Ir+n)(γ̃′ỹt − ξ̃)

→ −(Ir, 0n×n)(γ̃′ỹt − ξ̃) = −(Ir, 0n×n)

(
γ′yt − ξ
yt − yt−1

)
= −(γ′yt − ξ).

From (36) we find similarly

γ′Σhγ = γ′(In, 0n×n)α̃(γ̃′α̃)−1Γ̃(α̃, γ̃)−1α̃′(In, 0n×n)′γ → (Ir, 0n×n)Γ̃(Ir, 0n×n)′ = Γ.

Thus
η̄h,stat = γ(γ′Σhγ)−1γ′µh → −γΓ−1(γ′yt − ξ) = η̄stat, for h→∞.

Proof of Theorem 6. Proof of 1 : For h = 1 we get from the model equations (10), that
µ1 = E(∆yt+1|It) = α(γ′yt− ξ) + Φ∆yt and V ar(∆yt+1|It) = Ω, which shows (30) and (31).
Proof of 2 : From Theorem 5 we find the optimal Sharpe portfolio as

η̄h = Σ−1h µh = [(In, 0)Σ̃h(In, 0)′]−1(In, 0)µ̃h,

and the expressions (35) and (36) are valid for µ̃h and Σ̃h.
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We introduce the matrices B = (γ, γ̄⊥) and Bh = (γ, h−1γ̄⊥), (γ̄⊥ = (γ′⊥γ⊥)−1γ⊥) and
find using γ′(In, 0n×n) = (Ir, 0r×n)γ̃′ that from (36)

Σ−1h = ((In, 0)Σ̃h(In, 0)′)−1 = B(B′h(In, 0)Σ̃h(In, 0)′B)−1B′h

→ (γ, γ̄⊥)

(
Γ γ′(In, 0)Σ̃h(In, 0)′γ̄⊥
0 Υ

)−1(
γ′

0

)
= γΓ−1γ′.

Similarly we find from (35) that for h→∞,

η̄h = Σ−1h µh → −γΓ−1γ′(In, 0n×n)α̃(γ̃′α̃)−1(γ̃′ỹt − ξ̃) = −γΓ−1(γ′yt − ξ) = η̄stat.

Finally we find the limit of the optimal variance:

µ̃′h(In, 0)′[(In, 0)Σ̃h(In, 0)′]−1(In, 0)µ̃h = η̄′h(In, 0)µ̃h → (γ′yt − ξ)′Γ−1(γ′yt − ξ).
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