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Abstract

The cross-section average (CA) augmentation approach of Pesaran (2007) and Pesaran

et al. (2013), and the principal components-based panel analysis of non-stationarity in

idiosyncratic and common components (PANIC) of Bai and Ng (2004, 2010) are among

the most popular “second-generation” approaches for cross-section correlated panels. One

feature of these approaches is that they have different strengths and weaknesses. The pur-

pose of the current paper is to develop PANICCA, a combined approach that exploits the

strengths of both CA and PANIC.
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1 Introduction

Consider the panel data variable Yi,t, observable for t = 1, ..., T time periods and i = 1, ..., N

cross-section units. It is well known that unattended cross-section dependence can lead to
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deceptive inference when testing the null hypothesis of a unit root in such variables. This

is certainly true for panel unit root tests devised to test the hypothesis that Y1,t, ..., YN,t are

jointly unit root non-stationary, but the problem is there also when applying univariate unit

root tests to each cross-section unit. This finding has led to the development of factor-based

“second-generation” test procedures that are robust to cross-section dependence (see Breitung

and Pesaran, 2008; Baltagi, 2013, Chapter 12, for surveys of the literature). Two of the most

popular second-generation tests are the cross-section augmented Im–Pesaran–Shin (CIPS) and

Sargan–Bhargava (CSB) tests of Pesaran (2007) and Pesaran et al. (2013). In fact, these tests

have in a short period of time become two of the industry’s workhorses, with a large number

of applications and also several theoretical extensions (see, for example, Westerlund, 2015a;

Westerlund et al., 2015).

As the name suggests, the idea underlying the cross-section average (CA) augmentation

approach, originally put forth by Pesaran (2006) in the context of factor-augmented panel re-

gressions, is to use the cross-section average Yt of Yi,t as a proxy for the common component

of the data, which is then included in the regression as additional regressors. But if Yi,t is unit

root non-stationary then so is Yt, suggesting that, in analogy to the spurious regression phe-

nomenon, the asymptotic distributions of the resulting CIPS and CSB statistics will depend on

the Brownian motion generated by Yt. They will therefore be highly nonstandard, which in

turn makes for complicated implementation. In particular, not only is it necessary to tabulate

critical values for each constellation of (N, T), but there is also a need to truncate the test statis-

tics in order to ensure finite moments. As Pesaran et al. (2013) show, however, when properly

implemented, the CIPS and CSB tests do seem to enjoy relatively good small-sample perfor-

mance, which is partly expected given the relatively good performance of the CA components

estimator (see, for example, Chudik et al., 2011; Kapetanios and Pesaran, 2005; Westerlund

and Urbain, 2015). Another feature of the CIPS and CSB statistics is that they assume that the

common and idiosyncratic components of the data have the same order of integration, which

of course need not be the case in practice.

An alternative test approach that supports asymptotically normal inference is the panel

analysis of non-stationarity in idiosyncratic and common components (PANIC) of Bai and Ng

(2004, 2010). This approach, which, in contrast to CA augmentation, does not require the com-

mon and idiosyncratic components to be integrated of the same order, is arguably the most

popular approach in the literature with even more applications and extensions than CA (see,
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for example, Bai and Carrion-i-Silvestre, 2009, 2013; Gengenbach et al., 2006; Westerlund, 2014;

Westerlund and Hess, 2011; Westerlund and Larsson, 2012). The basic idea in PANIC is to first

transform Yi,t by taking first-differences. The method of principal components (PC) is then

applied to estimate the first-differenced common and idiosyncratic components, which can be

cumulated up to levels. The fact that the components are estimated from a regression in first-

differences means that the spurious regression problem is avoided, thereby enabling standard

normal inference. As the bulk of the existing Monte Carlo evidence show (see, for example,

Gengenbach et al., 2006, 2010; Pesaran et al., 2013; Westerlund and Larsson, 2009; Westerlund

and Urbain, 2015), however, the use of PC can render PANIC small-sample distorted, espe-

cially when N is “small”.

The purpose of the present paper is to propose a test procedure that is both general and

simple, yet with good small-sample performance. In view of the above discussion, a natural

suggestion towards this end is to use PANIC, but to apply it to the estimated CA components

rather than to the estimated PC components. As far as we are aware this is the first attempt

to exploit the advantages of both CA and PANIC. The properties of the resulting PANICCA

procedure is studied under the condition that the number of panel data variables is at least

as large as the number of common factors. Our key findings can be summarized as follows.

First, PANICCA inherits the generality of PANIC and enables inference regarding the unit

root and cointegration properties of both the common and idiosyncratic components of the

data. PANICCA can therefore be seen as a complete panel unit root toolbox. Second, be-

ing based on simple CA, PANICCA is very user friendly. In fact, in view of its generality,

it is surprisingly simple, requiring nothing but basic averaging and least squares (LS) op-

erations. To facilitate easy implementation, a full suit of GAUSS codes can be downloaded

freely from http://sites.google.com/site/perjoakimwesterlund/. Third, PANICCA leads to

the same asymptotic theory as PANIC. Appropriate critical values can therefore be taken di-

rectly from Bai and Ng (2004, 2010). Fourth, the use of CA rather than PC leads to much

improved small-sample performance, especially in the type of small- to medium-N panels

often encountered in applied work (see Lanzafame, 2010; Schmidt and Vosen, 2013; Martı́n,

2013; Joseph et al., 2012, 2013; Örsal and Dilan, 2014; Blomquist and Westerlund, 2014, for a

non-exhaustive list).

In our empirical application we consider an old empirical puzzle within financial eco-

nomics, namely, the failure of the efficient market hypothesis (EMH). Here we demonstrate
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the usefulness of the generality of PANICCA, as a platform for testing for cointegration both

within and between cross-section units. According to EMH, not only should the current for-

ward rate be cointegrated with the future spot rate, but there should also not be any cointegra-

tion running across currencies. Interestingly, while separately these cointegrating restrictions

have been subject to countless tests (see, for example, Hakkio and Rush, 1989; Baillie and

Bollerslev, 1989; Crowder, 1994, for early contributions), as far as we are aware, the current

paper is the first to consider a joint test of both restrictions.

The balance of the paper is organized as follows. In Section 2, we lay out the assumptions

that we will be working under and explain how these compare to the assumptions of PANIC.

Section 3 provides an account of the PANICCA procedure and its asymptotic properties, whose

accuracy in small samples is studied by means of Monte Carlo simulation in Section 4. Section

5 contains the empirical application and Section 6 concludes.

2 Model and assumptions

Consider the scalar panel data variable Yi,t, observable for i = 1, ..., N cross-section units and

t = 1, ..., T time periods. The data generating process (DGP) of this variable is assumed to be

given by the following common factor model:

Yi,t = α′iDt,p + λ′iFt + ei,t, (1)

where ei,t is a scalar idiosyncratic error, Ft is an r × 1 vector of common factors with λi being

the associated (r× 1) vector of loading coefficients, and Dt,p = (1, ..., tp)′ is a (p + 1)× 1 vector

of trends for which we consider two specifications; (i) a constant (p = 0), and (ii) a constant

and trend (p = 1). In this paper, Yi,t is considered as the variable of interest. However, we

do allow for the presence of an m× 1 vector of additional variables, henceforth denoted Xi,t,

whose data generating process is given by

Xi,t = β′iDt,p + Λ′iFt + ui,t, (2)

where ui,t is a m× 1 vector of idiosyncratic errors. Thus, as in Pesaran et al. (2013), we assume

the existence of an additional m variables that are permitted (but not required; see Remark 1)

to share the common factors of the variable of interest. This seems very plausible, especially in

macroeconomics and finance, where most variables are highly co-moving (see Section 5 for an

empirical illustration).
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Define Zi,t = (Yi,t, X′i,t)
′. In view of (1) and (2), the DGP of this variable is easily seen to be

given by

Zi,t = B′iDt,p + C′iFt + Vi,t, (3)

where Bi = (αi, βi), Ci = (λi, Λi) and Vi,t = (ei,t, u′i,t)
′. Note that the dimension of Ci is

r × (m + 1). The conditions under which we will be working are summarized below. Here

and throughout this paper tr(A), rk(A) and ||A|| =
√

tr(A′A) denote the trace, rank and

Frobenius (Euclidean) norm, respectively, of the matrix A, A = N−1 ∑N
i=1 Ai for any Ai, and

M < ∞ is a generic positive number.

Assumption 1. (1− ρiL)ei,t = φi(L)εi,t, where φi(L) = ∑∞
n=0 φi,nLn with ∑∞

n=0 n|φi,n| ≤ M and

φi(1) > 0, and εi,t is independently and identically distributed (iid) across both i and t with

E(εi,t) = 0, E(ε2
i,t) = 1 and E(|εi,t|8) ≤ M.

Assumption 2. ∆ui,t = Ψi(L)εi,t, where Ψi(L) = ∑∞
n=0 Ψi,nLn with ∑∞

n=0 n||Ψi,n|| ≤ M and

rk[Ψi(1)] = m1 ∈ [0, m], var(∆ui,t) = ∑∞
n=0 ΨnΨ′n is positive definite, and εi,t is iid across both

i and t with E(εi,t) = 0m×1, E(εi,tε
′
i,t) = Im and E(||εi,t||8) ≤ M.

Assumption 3. ∆Ft = Φ(L)ηt, where Φ(L) = ∑∞
n=0 ΦnLn with ∑∞

n=0 n||Φn|| ≤ M and

rk[Φ(1)] = r1 ∈ [0, r], var(∆Ft) = ∑∞
n=0 ΦnΣηΦ′n is positive definite, and ηt is iid across t

with E(ηt) = 0(m+1)×1, E(ηtη
′
t) = Ση and E(||ηt||4) ≤ M.

Assumption 4. Ci is a nonrandom vector satisfying ||Ci|| ≤ M and rk(C) = r ≤ m + 1 for any

N, including N → ∞.

Assumption 5. εi,t, εi,t and ηt are mutually independent.

Assumption 6. E(||F0||) ≤ M and E(|ei,0|) ≤ M for all i.

Denote by σ2
ε,i = ∑∞

n=0 φ2
i,n, ω2

ε,i = φi(1)2 and τε,i = (ω2
ε,i − σ2

ε,i)/2 the contemporaneous,

long-run and one-sided long-run variance of εi,t, respectively. Let us further denote by σ2
ε, ω2

ε

φ
4
ε and λε the cross-sectional averages of σ2

ε,i, ω2
ε,i, φ4

ε,i and τε,i, respectively, where φ4
ε,i = ω4

ε,i

(to avoid confusion between (ω2
ε)

2 and N−1 ∑N
i=1 ω4

ε,i).

Assumption 7. σ2
ε → σ2

ε , ω2
ε → ω2

ε φ
4
ε → φ4

ε and λε → λε as N → ∞, where σ2
ε , ω2

ε , φ4
ε ∈ (0, M)

and |λε| ≤ M.
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The above conditions are very similar to those employed by Bai and Ng (2004, 2010), and

we therefore refer to these previous works for a detailed discussion. The main differences are;

(i) the assumed presence of the m× 1 vector Xi,t, (ii) the requirement that rk(C) = r ≤ m + 1,

(iii) the requirement that εi,t and εi,t are iid across i, and (iv) the assumed nonrandomness of

Ci. Assumptions (i)–(iii) ensure that Ft can be estimated using nothing but the simple cross-

section average of Zi,t. The PC equivalent of (ii) is that rk(N−1 ∑N
i=1 CiC′i) = r ≤ k, where k is

the assumed number of common factors, which can be larger or smaller than m+ 1. Hence, the

usual problem in PC analysis of finding a suitable upper bound on the true number of factors,

r, is in CA tantamount to finding an appropriate number of extra variables. The additional ob-

servations required in CA is the “price” paid for the relative simplicity with which the factors

are estimated. Of course, in many situations, the model of ultimate interest is a multivariate

one, and the unit root testing is just a pre-test step. In situations like this, joint CA estimation

of the factors of all the variables of the model is expected to lead to reduced estimation uncer-

tainty when compared to variable-by-variable PC, as in original PANIC (see Westerlund and

Urbain, 2015). As pointed out in Westerlund and Urbain (2015), the requirement that rk(C) = r

is not testable. It can be relaxed, but then at the cost of additional restrictions on Ci. Indeed,

as Westerlund and Urbain (2013) show, if Assumption 4 is violated, then λi and Λi have to be

random and uncorrelated.

As in Bai and Ng (2010), (iii) is not really necessary and can be relaxed to allow for weak

cross-section correlation in the “idiosyncratic” component (see Bai and Ng, 2004). In the termi-

nology of Chudik et al. (2011), εi,t and εi,t may be “semi-weakly” correlated without affecting

the results derived in Appendix. The intuition is simple. Suppose for sake of argument that

φi(L) = 1, Ψi(L) = Im and ρ1 = ... = ρN = 1, implying vi,t = ∆Vi,t = (εi,t, ε′i,t)
′. A key re-

quirement for the consistency of the estimated factors is that ||vt|| = Op(N−1/2) (see Remark

2 of Section 3), which will be the case if εi,t and εi,t are iid. However, while sufficient, iid-

ness is clearly not a necessary condition. Suppose for example that vi,t = A′i∆Ft + ξi,t, where

Ai = N−αCi and ξi,t is iid across both i and t with mean zero and four finite moments. If

α ∈ [1/2, 1), such that vi,t is semi-weakly cross-correlated, then ||vt|| ≤ N−α||C|| · ||∆Ft|| +

||ξt|| = Op(max{N−α, N−1/2}) = Op(N−1/2).

As with (iii), assumption (iv) is only for simplicity, and can be relaxed, provided that Ci is

independent of all the other random elements of the DGP and E(||Ci||4) ≤ M (see Bai and Ng,

2004, 2010). Alternatively, we may assume that Ci satisfies Assumption 3 of Pesaran (2004).
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Remark 1. The assumption that Yi,t and Xi,t depend on the same set of factors is not a re-

striction. Suppose, for example, that the factors to Yi,t and Xi,t do not have any elements in

common. In order to capture this we introduce the r× r orthogonal matrix J = (J1, J2), which

is such that J′J = JJ′ = Ir. The component matrices J1 and J2, which are of dimension r× r1 and

r× (r− r1), respectively, are such that J′2J1 = 0(r−r1)×r1
, J′1Λi = 0r1×(m+1) and J′2λi = 0(r−r1)×1.

The matrix J allows us to rotate Ft as J′Ft = (J′1Ft, J′2Ft) = (F′1,t, F′2,t)
′. Thus, defining J′1λi = λ1,i

and J′2Λi = Λ2,i, we have Yi,t = α′iDt,p + λ′iFt + ei,t = α′iDt,p + λ′iJJ′Ft + ei,t = α′iDt,pλ′1,iF1t + ei

and similarly Xi,t = β′iDt,p + Λ′2,iF2,t + ui,t.

3 PANICCA

The idea behind PANIC is to first transform Zi,t by taking first differences. Since the trans-

formed variable is stationary by assumption, the uncertainty regarding the order of integration

of Zi,t is gone, which means that the common and idiosyncratic components can be estimated

using existing methods for common factor models. While Bai and Ng (2004, 2010) use PC, in

the present paper we use CA. The estimated level components are obtained by simply taking

partial sums of the estimated first-differenced components. The unit root and cointegration

properties of these components can then be tested using the existing battery of tests.

The purpose of the rest of this section is to make the above discussion a little more precise.

Let us begin by defining zi,t = ∆Zi,t, dt,p = ∆Dt,p, ft = ∆Ft and vi,t = ∆Vi,t. Denote by G

the p× (p + 1) selection matrix of zeroes and ones removing the first element of dt,p, which is

zero, that is, Gdt,p = Dt,p−1. Since rk(G′G) = p, we may further define the p× (m + 1) matrix

bi = G(G′G)−1Bi. In this notation, the first-differenced version of (3) may be written as

zi,t = b′iDt,p−1 + C′ift + vi,t, (4)

or, in matrix form,

zi = Dp−1bi + fCi + vi, (5)

where zi = (zi,2, ..., zi,T)
′ and vi = (vi,2, ..., vi,T)

′ are (T − 1) × (m + 1), f = (f2, ..., fT)
′ is

(T − 1) × r, and Dp−1 = (D2,p−1, ..., DT,p−1)
′ is (T − 1) × (p − 1). Since f and Ci are not

separately identifiable, the best that we can do is to estimate the space spanned by these ma-

trices. Define Mp = IT−1 −Dp−1(D′p−1Dp−1)
−1D′p−1 for p = 1 and Mp = IT−1 for p = 0. Let
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zp
i = (zp

i,2, ..., zp
i,T)
′ = Mpzi with similar definitions of fp and vp

i . In this notation, (5) can be

written alternatively as

zp
i = fpCi + vp

i . (6)

The CA estimator of (the space spanned by) fp is given by f̂p = Mpz = zp = N−1 ∑N
i=1 Mpzi,

while Ĉi = [(f̂p)′ f̂p]−1(f̂p)′zp
i is the LS estimator of Ci in (6) with fp replaced by f̂p. The estima-

tor of vp
i is given by v̂p

i = zp
i − f̂pĈi. Note that f̂p

t (v̂p
i,t) is an estimator of the first-differenced

(and detrended) version of Ft (Vi,t). As an estimator of (the detrended version of) Ft (Vi,t) we

use F̂p
t = ∑t

n=2 f̂p
n (V̂p

i,t = ∑t
n=2 v̂p

i,n).

Remark 2. A conceptual difference when compared to Pesaran (2006, 2007), and Pesaran et al.

(2013) is that while in these other works the averages are referred to as “factor proxies”, in the

present study f̂p is treated as an estimator for the space spanned by fp
t . The reason is simple.

We begin by noting that zp
t = C

′
fp

t + vp
t . This implies

f̂p
t = zp

t = C
′
fp

t + vp
t = C

′
fp

t + Op(N−1/2),

where the order of the remainder follows from the fact that vp
i,t is mean zero and independent

across i. Hence, f̂p
t is consistent, but not for fp

t ; only for C
′
fp

t , which is enough for our purposes.

The rotation by C here illustrates the need for the rank condition in Assumption 4. Suppose,

for example, that r = 1 but C = 01×(m+1). In this case there is a single common factor present.

However, since C
′
fp

t = 0, f̂p
t will be unable to capture it.

3.1 Testing ei,t

Note that Ĉi can be decomposed as Ĉi = (λ̂i, Λ̂i), where λ̂i is r × 1 and Λ̂i is r × m. We also

have V̂p
i,t = [êp

i,t, (û
p
i,t)
′]′, where êp

i,t is a scalar and ûp
i,t is m× 1. Denote by ρ̂p the least squares

slope estimator in a pooled panel regression of êp
i,t onto êp

i,t−1. The test statistics considered

herein are all taken from Bai and Ng (2010), and are designed to test the null hypothesis that
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ρ1 = ... = ρN = 1. The first two test statistics, denoted Pa,p and Pb,p, are defined as follows:

Pa,0 =

√
NT(ρ̂+0 − 1)√

2φ̂4
ε/ω̂4

ε

,

Pb,0 =

√
NT(ρ̂+0 − 1)√

φ̂4
ε/[ω̂2

ε N−1T−2 ∑N
i=1(ê

0
i,−1)

′ ê0
i,−1]

,

Pa,1 =

√
NT(ρ̂+1 − 1)√
36σ̂4

ε φ̂4
ε/5ω̂8

ε

,

Pb,1 =

√
NT(ρ̂+1 − 1)√

6φ̂4
ε σ̂4

ε /[5ω̂6
ε N−1T−2 ∑N

i=1(ê1
i,−1)

′ ê1
i,−1]

,

where êp
i,−1 = (êp

i,2, ..., êp
i,T−1)

′ and

ρ̂+0 = ρ̂0 +
τ̂ε

(NT)−1 ∑N
i=1(ê

0
i,−1)

′ ê0
i,−1

,

ρ̂+1 = ρ̂1 +
3σ̂2

ε

Tω̂2
ε

.

Here σ̂2
ε , ω̂2

ε φ̂4
ε and τ̂ε are given by the cross-sectional averages of σ̂2

ε,i, ω̂2
ε,i φ̂4

ε,i and τ̂ε,i, respec-

tively. The first two of these estimated variances are constructed as follows:

σ̂2
ε,i =

1
T

T

∑
t=3

ε̂2
i,t,

ω̂2
ε,i =

J−1

∑
j=J+1

K(j)
1
T

T

∑
t=j+3

ε̂i,tε̂i,t−j,

where ε̂i,t = êi,t − ρ̂p êi,t−1, K(j) = 1− j/(J + 1) is the Bartlett kernel and J is the associated

kernel bandwidth parameter, which is assumed to satisfy Assumption 8 below. The estimators

of φ4
ε,i and λε,i are given naturally by τ̂ε,i = (ω̂2

ε,i − σ̂2
ε,i)/2 and φ̂4

ε,i = ω̂4
ε,i, respectively.

Assumption 8. J/ min{
√

N,
√

T} → 0 as J, N, T → ∞.

The second test statistic that we consider, denoted PMSBp, is the panel modified Sargan–

Bhargava (PMSB) test statistic of Bai and Ng (2010), as given by

PMSB0 =

√
N(N−1T−2 ∑N

i=1(ê
0
i,−1)

′ ê0
i,−1 − ω̂2

ε/2)√
φ̂4

ε/3
,

PMSB1 =

√
N(N−1T−2 ∑N

i=1(ê
1
i,−1)

′ ê1
i,−1 − ω̂2

ε/6)√
φ̂4

ε/45
.
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Theorem 1 reports the asymptotic null distributions of Pa,p, Pb,p and PMSBp.

Theorem 1. Under Assumptions 1–8 and the null hypothesis that ρ1 = ... = ρN = 1, as N, T → ∞

with N/T → 0,

Pa,p →d N(0, 1),

Pb,p →d N(0, 1),

PMSBp →d N(0, 1),

where→d signifies convergence in distribution.

According to Theorem 1 all three test statistics converge to N(0, 1) under the unit root null.

It is not difficult to show, however, that Pa,p and Pb,p are asymptotically equivalent, which

means that for these statistics the convergence is to the same normal variate. Note also that

while Pa,p and Pb,p are (bias-adjusted) t-statistics of the largest autoregressive root, PMSBp is a

ratio of variances. In spite of this difference, however, provided that the alternative formulated

as that |ρi| < 1 for some i, all three statistics are left-tailed. The appropriate 5% critical value is

therefore given by −1.645.

Remark 4. The fact that the PANICCA-based statistics are asymptotically N(0, 1) stands in

sharp contrast to the results reported by Pesaran (2007) and Pesaran et al. (2013), who use Zt

(and zt) as a “proxy” for Ft. This means that if r1 > 0 the asymptotic distributions of their

CIPS and CSB test statistics depend on the Brownian motion associated with Ft. As alluded to

in Section 1, this difference is due to the fact that here the estimation is done using only zt (the

first-differenced data).

3.2 Testing Ft

The rate of consistency of the CA estimator f̂p
t of (the space spanned by) fp

t is the same as that

of the PC estimator when
√

N/T → c ≤ M and it is faster when
√

N/T → ∞. The results

reported by Bai and Ng (2004, Theorems 1 and 3) for the tests of the estimated PC factors

therefore go through also in case of CA estimation.

The testing is carried out in the following fashion. If r = m + 1 = 1, such that F̂p
t (and

Fp
t ) is a scalar, then the testing can be carried out using any existing unit root test. Bai and

Ng (2004) only consider the augmented Dickey–Fuller (ADF) test, henceforth denoted ADFp,

10



and hence so do we. Let us therefore define ∆F̂p = (∆F̂p
3+q, ..., ∆F̂p

T)
′, F̂p
−1 = (F̂p

2+q, ..., F̂p
T−1)

′,

W = (W2+q, ..., Wp
T)
′, where Wt = (∆F̂p

t−1, ..., ∆F̂p
t−q)

′. The ADF statistic is given by

ADFp =
(F̂p
−1)
′Mp+1MWMp+1∆F̂p

σ̂η

√
(F̂p
−1)
′Mp+1MWMp+1F̂p

−1

,

where σ̂2
η = T−1(∆F̂p)′Mp+1MWMp+1∆F̂p, MW = IT−q−1 −W(W′W)−1W′ and the last q rows

of Mp has been removed to make it conformable with W. Note how the dependence on q has

been suppressed in ADFp.

If r = m + 1 > 1, then the following sequential test procedure can be used to determine r1,

the number of unit roots in F̂p
t :

1. Set k = r.

2. Compute Ŷp
k = (Ŷp

2,k, ..., Ŷp
T,k)
′ = Mp+1F̂p β̂k, where β̂k is the (m + 1)× k matrix of eigen-

vectors associated with the k largest eigenvalues of T−1(F̂p)′Mp+1F̂p.

3. The test statistic is given by

MQp(k) = T[ŵp(k)− 1],

where ŵp(k) is the smallest eigenvalue of

1
2
[(Ŷp

k,−1)
′Ŷp

k + (Ŷp
k )
′Ŷp

k,−1 − T(Σ̂k + Σ̂
′
k)][(Ŷ

p
k,−1)

′Ŷp
k,−1]

−1,

with Σ̂k = ∑J−1
j=1 K(j)T−1 ∑T

t=j+3 Ût−j,kÛ′t,k, Ût,k is the residual from a LS fit of Ŷt,k onto

Ŷt−1,k, and where J is assumed to satisfy Assumption 8.

4. If the null hypothesis that r1 = k is rejected using MQp(k), set k = k − 1 and return to

step 2. Otherwise, set r̂1 = k and stop.

Remark 5. MQp is the MQc test statistic of Bai and Ng (2004) applied to the estimated CA

factors. Bai and Ng (2004) also consider another statistic, denoted MQ f . However, since MQc

is more general, in this paper we only consider the CA version of this statistic.

Assumption 9. q3/ min{N, T} → 0 as q, N, T → ∞.

In Theorem 2 we report the asymptotic null distributions of ADFp and MQp(k). In so doing

it is useful to introduce the following detrended Brownian motion:

Wp
r (s) = Wr(s)−

∫ 1

0
Wr(v)dp(v)′dv

(∫ 1

0
dp(v)dp(v)′dv

)−1

dp(s),
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where dp(s) = (1, ..., sp)′ is the limiting trend function and Wr(s) is an r × 1 vector standard

Brownian motion.

Theorem 2. Under Assumptions 1–9 the following results hold as N, T → ∞:

(i) Suppose that r = m + 1 = 1. Under the null hypothesis that Ft has a unit root,

ADFp →w

∫ 1
0 Wp

1(s)dW1(s)√∫ 1
0 [W

p
1(s)]2ds

,

where→w signifies weak convergence.

(ii) Suppose that r = m + 1 > 1. Under the null hypothesis that Ft has k unit roots,

MQp(k)→w T[wp(k)− 1],

where wp(k) is the smallest eigenvalue of

1
2
[Wp

r (1)W
p
r (1)′ − Ik]

(∫ 1

0
Wp

r (s)W
p
r (s)′ds

)−1

.

The asymptotic distribution of ADFp is identically the ADF test distribution, for which

critical values are readily available (see, for example, MacKinnon, 1996). Appropriate 1%, 5%

and 10% critical values for MQp(k) (k = 1, ..., 6) can be found in Table 1 of Bai and Ng (2004).

Remark 6. The results reported so far make use of Assumption 4, which only requires that the

true number of factors, r, is less than or equal to m + 1. If one would like to pinpoint r, one

possibility is to employ an information criterion. This approach has been shown to work in the

context of PC estimation (see Bai and Ng, 2002), and, as pointed out by Pesaran et al. (2013,

Section 4.1), it is expected to work well also for CA. The information criterion considered in

this paper, which can be seen as a multivariate analog of the PC-specific ICp3 criterion of Bai

and Ng (2002), takes the form

IC(s) = ln[det(Σ̂s)] + s · N−1 ln(N), (7)

where Σ̂s = (NT)−1 ∑N
i=1(v

p
i )
′vp

i is the sum of squared residuals in (6) based on using s ≤ m+ 1

cross-section averages. The penalty, s ·N−1 ln(N), is the same as in ICp3 with T = 0. The reason

for this difference is that while the rate of consistency of the PC estimator depends on both N

12



and T, as we explain in Remark 2 of Section 3, the rate of consistency of f̂p only depends on N

(see Bai and Ng, 2002, page 219, for a discussion). The estimator r̂ of r is given naturally by

r̂ = arg min
s=0,...,m+1

IC(s).

The consistency of r̂ is a direct consequence of Corollary 2 of Bai and Ng (2002), which is not

PC-specific but applies to any estimator of fp.

4 Monte Carlo simulations

4.1 Testing ei,t

The relative performance of PANICCA when compared to original PANIC is assessed through

a small-scale Monte Carlo simulation study. The DGP used for this purpose is given by a

simplified version of (1)–(3) that sets r = 3, m = 2, αi ∼ U(0, 1), βi ∼ U(0, 1), λ′i = (1, li, li)

and

Λ′i =

[
li 1 li
li li 1

]
,

where li = 1.5 · 1(i > N/2) − 0.5 and 1(A) is the indicator function for the event A. This

parametrization of λi and Λi ensures that C has ones on the main diagonal and 0.25 elsewhere,

which means that Assumption 4 is met. Also, ei,t = ρei,t−1 + εi,t, ui,t = ρui,t−1 + εi,t and

Ft = δFt−1 + ηt, where (εi,t, ε′i,t, η′t)
′ ∼ N(06×1, I6). We begin by considering the 5% size and

size-corrected power of Pa,p, Pa,p and PMSBa,p. In the size experiments, ρ = δ = 1, while in

the power experiments, ρ = 0.95 and δ = 0.5. All results are based on making 5,000 draws

of panels where N and T are chosen so as to illustrate the main difference between PANIC

and PANICCA, which occurs naturally when the sample size is relatively small. We chose

N, T ∈ {10, 20, 35, 50}, which is consistent with the bulk of empirical work based on PANIC

(see, for example, Lanzafame, 2010; Schmidt and Vosen, 2013; Martı́n, 2013; Joseph et al., 2012,

2013; Örsal and Dilan, 2014; Blomquist and Westerlund, 2014).

We begin by considering the size results for the intercept-only case when p = 0, which are

reported in Table 1. The information content of this table may be summarized as follows.

• While there are some noticeable distortions, these are mainly among the smaller values

of N and T. In fact, size accuracy is quite good already with T = 50 and N = 35, and

it increases with increasing values of T and to a lesser extent with increasing values N.
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That the effect of increasing T is relatively more pronounced is in agreement with the

condition that N/T → 0.

• The distortions are generally somewhat smaller for PANICCA than for PANIC. This cor-

roborates the findings of Westerlund and Urbain (2015) in the factor-augmented regres-

sion case, suggesting that CA tend to be more accurate than PC.

• Looking across the three types of tests, the best size accuracy is generally obtained by

using the PSMB tests.

• The PANICCA-based tests are uniformly more powerful than their PANIC-based coun-

terparts. The difference in power is large enough not to be ignored and can in fact be

quite substantial.

• In agreement with their relatively high rejection frequencies under the null, the best

power is generally obtain by using the Pa- and Pb-type tests. This finding is consistent

with the results of Westerlund (2015b), showing how the local asymptotic power of the

PANIC versions of these tests is higher than that of the PANIC-based PSMB test.

• The fact that the difference in size and power is decreasing in N and T is consistent with

the asymptotic equivalence of PANICCA and PANIC.

The results reported in Table 2 for the case with an intercept and trend (p = 1) are very

similar to those reported in Table 1, and we therefore just briefly describe them. The first thing

to note is that the size distortions are actually reduced as the linear trend is added, which is

somewhat unexpected, because usually the distortions are increasing in p. Another difference

worth noting is the power, which is much lower in Table 2 than in Table 1. In fact, the power

in the linear trend case only rarely raises above the nominal 5% level. That the power is re-

duced by the inclusion of the linear trend is a reflection of the well-known “incidental trends

problem” (see Westerlund, 2015b), and is therefore expected.

4.2 Testing Ft

In this subsection, we investigate the performance of the sequential procedure to determine

r1, the number of unit root factors. The DGP is the same as before. The only difference is the

common factors, which are now generated according to Ft = diag(δ0 · 1′(r−r1)×1, 1′r1×1)Ft−1 + ηt,
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where ηt is as before, 1r×1 = (1, ..., 1)′ is an r× 1 vector of ones, and |δ0| < 1 is the autoregres-

sive coefficient of the stationary factors (see Bai and Ng, 2004, for a similar parametrization).

In interest of space, we focus on the results for the case when N = 20 and T = 50.

The most striking observation that can be made from Table 3 is that the proposed CA-

based estimator r̂1 of r1 is much more robust to variations in ρ than the corresponding (PANIC)

estimator based on PC. In fact, in a majority of cases the PC bias was twice as large as the

corresponding CA bias. According to the results reported by Bai and Ng (2004), the PC-based

estimator of r1 is more robust than both the trace test-based procedure of Johansen (1995),

and the information criterion of Aznar and Salvador (2002). Being more accurate than PC, the

CA-based estimator is expected to outperform also these other estimation approaches.

5 An application to the EMH

A financial market is said to be efficient if prices fully reflect all available information and no

profit opportunities are left unexploited. The agents form their expectations rationally and

rapidly arbitrage away any deviations of the expected returns consistent with supernormal

profits. Therefore, if currency markets are efficient, the spot (forward) exchange rate should

embody all relevant information, and it should not be possible to forecast one spot (forward)

rate as a function of another. In what follows we refer to this proposition of the EMH as the

efficient cross-market hypothesis (ECMH). Also, provided that agents are risk neutral and that

the risk premium is stationary, the current forward rate should be an unbiased predictor of the

future spot rate. This is the forward rate unbiasedness hypothesis (FRUH).

The validity of the above propositions the EMH has been, and still is, one of the most heav-

ily researched areas in the financial literature. However, a lot of controversy still exists about

the method that must be applied to test for its existence. In particular, the use of cointegration

techniques has become very popular, and is by now the workhorse of the industry (see Zivot,

2000, for a survey of the cointegration-based literature). Indeed, since the seminal work of

Hakkio and Rush (1989), it is well recognized that the FRUH requires that the future spot and

current forward rates are cointegrated and one-to-one. Also, if the ECMH holds, then spot and

forward rates cannot be cointegrated across markets.

Interestingly, while each of these propositions of the EMH occupies a huge literature (see,

for example, Hakkio and Rush, 1989; Baillie and Bollerslev, 1989; Crowder, 1994, for early con-
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tributions), we know of no previous study that has tried to formalize the connection between

the two. In particular, since both spot and forward rates from across a variety of markets ex-

hibit unit root-like behavior, a natural question concerns the source of the non-stationarity. To

formalize matters slightly, let us denote by si,t ( fi,t) the log spot (forward) rate of market i at

time t. In terms of the model of Section 2, Yi,t = si,t+1 and Xi,t = fi,t. Consider si,t. According to

the ECMH, this variables must not be cointegrated across markets. In order to appreciate the

implications of this, it is useful to note that

si,t+1 − θsj,t+1 = (αi − θαj)
′Dt,p + (λi − θλj)

′Ft + ei,t − θej,t.

Obviously, being idiosyncratic, ei,t and ej,t cannot be cointegrated for i 6= j. Hence, for the

ECMH to hold it must be that (λi − θλj)
′Ft and/or e1,t, ..., eN,t are unit root non-stationary,

such that si,t+1 − θsj,t+1 is unit root non-stationary too. Similarly, for fi,t − θ f j,t to be non-

stationary, we require that (Λi − θΛj)
′Ft and/or u1,t, ..., uN,t are unit root non-stationary. Of

course, only one of the conditions have to be met for the EMH not to fail, and in the current

paper we therefore test whether e1,t, ..., eN,t and u1,t, ..., uN,t are unit root non-stationary. But we

also have

si,t+1 − fi,t = (αi − βi)
′Dt,p + (λi −Λi)

′Ft + ei,t − ui,t,

which means that for si,t+1 and fi,t to be cointegrated and one-to-one, as dictated by the FRUH,

the following additional conditions must be satisfied: αi = βi, (λi − Λi)
′Ft is stationary, and

ei,t and ui,t must be either stationary, or cointegrated and one-to-one.

As the above discussion makes clear, the ECMH and FRUH arise naturally as restrictions

on the general factor model considered here. All-in-all, we have the following four restrictions:

R1. e1,t, ..., eN,t and u1,t, ..., uN,t are unit root non-stationary;

R2. αi = βi;

R3. (λi −Λi)
′Ft is stationary;

R4. ei,t and ui,t are either stationary, or cointegrated and one-to-one.

While R1 is a test of the ECMH, R2–R4 test the FRUH. In what remains we test each of re-

strictions. The test machinery developed in the present paper is ideally suited for this task, as

it does not place any restrictions on the source of the (potential) non-stationarity of the data.
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Also, unlike original PANIC, in which the common component of each variable would be esti-

mated separately, in PANICCA the common component of both variables is estimated jointly,

leading to increased efficiency (see Westerlund and Urbain, 2015).1 The data set that we use

is the same as in Westerlund (2007), and consists of monthly spot and forward exchange rates

relative to the United States dollar. The sample covers 15 OECD countries between February

1997 and July 2006. Hence, N = 15 and T = 115. The choice of data set is motivated in part by

comparability, in part by the preference of Westerlund (2007) to treat the factors as stationary,

a restriction that is never tested.

We begin by testing R1, that is, we test if the estimated idiosyncratic components of both

the spot and forward rates can be characterized as unit root non-stationary. The tests are imple-

mented as described in Sections 3 and 4. Also, since both variables do not appear to be trend-

ing, we focus on the constant-only specification. The results reported in Table 4 are mixed. In

particular, while according to Pa,0 the unit root null should be rejected, according to PMSB0 it

should not. The evidence based on Pb,0 is more ambiguous, favoring a rejection at the 10% level

but not at the 5% level. Of course, given the broad formulation of the alternative hypothesis (as

that there is at least one country for which the idiosyncratic component is stationary), ideally

the results should be overwhelmingly against the null in case of a rejection. However, this is

not what we observe. In view of this, and the tendency of Pa,0 and Pb,0 to overreject in small-N

panels (see Section 4), in what follows we treat the idiosyncratic components of both si,t and fi,t

as unit root non-stationary, a conclusion that is supported by some (unreported) unit-by-unit

ADF test results. The implication of this result is that si,t and fi,t cannot be cointegrated across

countries, which is consistent with the ECMH.
1As a referee of this journal point out, one could also consider a multivariate extension of original PANIC.
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Figure 1: Estimated common factors.

Having tested R1 we now continue to R2–R4, which represent the FRUH part of the EMH.

We begin by examining the the common component. Application of the MQ0(k)-based sequen-

tial test procedure to the common component of Zi,t = (si,t+1, fi,t)
′ yields r̂1 = 1. Hence, there

is a unique cointegrating relationship between the two factors, F1,t and F2,t say, in Ft. In order

to appreciate the implication of this for R3, note how (λi −Λi)
′Ft = (λ1,i −Λ1,i)[F1,t − γiF2,t],

where γi = −(λ2,i −Λ2,i)/(λ1,i −Λ1,i), and λn,i (Λn,i) is the n-th row of λi (Λi). Cointegration

between F1,t and F2,t therefore implies that (λi − Λi)
′Ft is stationary (see also Gengenbach et

al., 2006). The finding that F1,t and F2,t are cointegrated is supported by Figure 1, which plots

the estimated CA factors. Both factors exhibit clear and strikingly similar unit root-like behav-

ior. In fact, the lines representing the factors almost coincide. R3 is therefore supported by the

data. The non-stationarity of the factors implies that previous results based on assuming either

that the factors are stationary or indeed absent altogether (see, for example, Westerlund, 2007)

should be reconsidered.

A test of R4 involves testing for cointegration between ê0
i,t and û0

i,t, which is can be carried

out in a very straightforward fashion. Note in particular that since ê0
i,t and û0

i,t are (asymptoti-

cally) cross-section independent, we may apply any first-generation test statistic designed for

such cross-section independent panels. We choose the panel-t and group-t statistics of Pedroni

(2004), which are two of the most popular (and scrutinized) test statistics in the literature. The
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main difference between the two is that while the panel-t statistic is based on within pooling,

the group-t statistic is based on between pooling. The results reported in Table 4 suggests that

no cointegration null is strongly rejected even at the 1% level, which we take as evidence in

favor of cointegration.

The next step in the test of R4 involves testing if the cointegrating slope on fi,t is indeed

unity, as postulated by theory. The estimated cointegrating slopes of both the common and

idiosyncratic components are reported in Table 5. Again, given the consistency of the com-

ponent estimates, the estimation of the cointegrating relationship can be carried out as if the

components are in fact observed. We therefore follow the usual practice and apply fully mod-

ified LS (FMLS) and dynamic LS (DLS) techniques (see, for example, Pedroni, 2001). These

are robust to endogeneity, but in the panel case not to cross-section dependence, which is also

not necessary since the idiosyncratic components are cross-section independent by assump-

tion. Analogous to the cointegration testing, we consider both a group estimator and a panel

estimator, which both allow for country-specific fixed effects. The first thing to note is that the

slope estimates are very close to one. In case of the common factors, the evidence against the

null hypothesis of a unit slope is insignificant, as is the evidence for the idiosyncratic compo-

nent based on the group mean estimator. However, according to the panel estimator, the slope

is significantly different from one. But since the point estimate is very close to one, our overall

interpretation of the results is still in support of the unit slope hypothesis. The bulk of the

evidence is therefore in favor of R4.

Since the deterministic component is eliminated prior to estimating the components of

the data, unlike R1, R3 and R4, in PANICCA there is no natural test of R2. Westerlund and

Blomquist (2013) develop a (PANIC-based) test for the presence of a linear trend in (1), which

is based on testing if the average of the first-differenced data is zero. We test if (si,+1 − f i) is

zero on average, which can be done using a simple t-test. The logic behind this test stems from

the fact that under R3 and R4, (s+1 − f ) = N−1 ∑N
i=1(si,+1 − f i) is a consistent estimator of

(α− β), which is zero under R2. Applying this test to the data, we find that (s+1− f ) ≈ 0.0003

and the associated t-statistic is 0.25, leading to a clear non-rejection of the zero intercept null.

Hence, this test does not provide any evidence against R2.

The results reported in this section suggest that the evidence against the EMH is weak, at

best. In fact, most of the restrictions of the hypothesis seem to be satisfied in our sample. This

is noteworthy because, despite the wide acceptance of the EMH in theory, most cointegration-
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based studies tend to reject the EMH (see Zivot, 2000, for a review of the literature). One

explanation of this difference in the results is the generality of the DGP considered here, which

does not impose any assumptions on the nature of the non-stationarity of the data. In fact,

PANICCA seems to provide a natural platform for testing the unit root and cointegration im-

plications of the EMH.

6 Conclusions

The CA approach of Pesaran (2006) is one of the most convenient approaches around for deal-

ing with the effects of cross-section dependence. However, the way that this approach is imple-

mented when testing for unit roots has resulted in test statistics with nonstandard asymptotic

distributions and, as a result, complicated implementation. The current paper can be seen as a

reaction to this. The purpose is to develop CA-based tests that support asymptotically normal

inference. As a starting point we take the PANIC approach of Bai and Ng (2004, 2010), which

is one of the most general panel unit root test approaches around. Original PANIC uses PC

to estimate the common and idiosyncratic components of the data. CA is more convenient

and has been shown to perform relatively well in small samples. These considerations lead

naturally to PANICCA, PANIC based on CA rather than PC.
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Appendix: Proofs

Define ep
i,t = ∑t

n=2(∆ei,n)
p. Let st = f̂ p

t − C
′
fp

t , St = ∑t
n=2 sn and di = λ̂i − C

−
λi.

Lemma A.1. Under Assumptions 1–7, uniformly in i = 1, ..., N and t = 2, ..., T,

||st|| = Op(N−1/2), (i)

||St|| = Op(
√

TN−1/2), (ii)

||di|| = Op(T−1/2) + Op(N−1). (iii)

Proof of Lemma A.1.

From f̂p
t = zp

t = C
′
fp

t + vp
t , we obtain st = f̂p

t − C
′
fp

t = vp
t = Op(N−1/2), as required for (i).

The result in (ii) is a direct consequence of this;

||T−1/2St|| = N−1/2

∣∣∣∣∣
∣∣∣∣∣ 1√

T

t

∑
n=2

√
Nvp

t

∣∣∣∣∣
∣∣∣∣∣ = Op(N−1/2). (A1)

For di, note that Ĉi = [T−1(f̂p)′ f̂p]−1T−1(f̂p)′zp
i , where, via fp = (f̂p − vp)C

−
,

T−1(zp
i )
′ f̂p = T−1C′i(f

p)′ f̂p + T−1(vp
i )
′ f̂p

= T−1C′i(C
−
)′(f̂p)′ f̂p − T−1C′i(C

−
)′(vp)′(fpC + vp) + T−1(vp

i )
′(fpC + vp)

= C′i(C
−
)′T−1(f̂p)′ f̂p − C′i(C

−
)′T−1(vp)′fpC− C′i(C

−
)′T−1(vp)′vp

+ T−1(vp
i )
′fpC + T−1(vp

i )
′vp.

Here ||T−1(vp)′fp|| = Op((NT)−1/2) and ||T−1(vp)′vp|| = Op(N−1), which are dominated by

T−1(vp
i )
′fp and T−1(vp

i )
′vp. The first of these is Op(T−1/2). For the second, we use

NT−1(vp
i )
′vp =

1
T

T

∑
t=2

N

∑
j=1

vp
i,tv

p
j,t =

1
T

T

∑
t=2

(vp
i,t)

2 +

√
N√
T

1√
NT

T

∑
t=2

N

∑
j 6=i

vp
i,tv

p
j,t

= Op(1) + Op(
√

NT−1/2),

implying that ||T−1(vp
i )
′vp|| = Op(N−1) + Op((NT)−1/2). It follows that

||T−1(zp
i )
′ f̂p − C′i(C

−
)′T−1(f̂p)′ f̂p||

≤ ||Ci||||C
−||||T−1(vp)′fp||||C||+ ||Ci||||C

−||||T−1(vp)′vp||+ ||T−1(vp
i )
′fp||||C||

+ ||T−1(vp
i )
′vp||

= Op(T−1/2) + Op(N−1).
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Substitution of this result into Ĉi yields, with ||T−1(f̂p)′ f̂p|| = Op(1),

||Ĉi − C
−

Ci|| = ||[T−1(f̂p)′ f̂p]−1T−1(f̂p)′zp
i − C

−
Ci|| = Op(T−1/2) + Op(N−1). (A2)

Hence,

||di|| = ||λ̂i − C
−

λi|| = Op(T−1/2) + Op(N−1), (A3)

as was to be shown. �

Lemma A.2. Under the conditions of Lemma A.1,

1
NT2

N

∑
i=1

T

∑
t=2

(êp
i,t)

2 =
1

NT2

N

∑
i=1

T

∑
t=2

(ep
i,t)

2 + Op(N−1) + Op(T−1).

Proof of Lemma A.2.

This proof is analogous to Proof of Lemma 1 in Bai and Ng (2010). Let us denote by A− the

Moore–Penrose inverse of the matrix A. Note in particular that if A has full row rank, then

A− = A′(AA′)−1, whereas if A has column row rank, then A− = (A′A)−1A′. Thus, since C

has full row rank, we have C
−
= C

′
(CC

′
)−1, such that CC

−
= Ir. Making use of this result,

yp
i,t = λ′if

p
t + (∆ei,t)

p = λ′i(C
−
)′C
′
fp

t + (∆ei,t)
p. (A4)

Moreover,

yp
i,t = λ̂

′
i f̂

p
t + (∆̂ei,t)

p. (A5)

Subtracting (A4) from (A5), we obtain

(∆̂ei,t)
p = (∆ei,t)

p + λ′i(C
−
)′C
′
fp

t − Ĉ′i f̂
p
t

= (∆ei,t)
p − λ′i(C

−
)′(f̂p

t − C
′
fp

t )− (λ̂i − C
−

λi)
′ f̂p

t

= (∆ei,t)
p − λ′i(C

−
)′st − d′i f̂

p
t . (A6)

Insertion into the definition of êp
i,t now yields

êp
i,t =

t

∑
n=2

∆̂e
p
i,n = ep

i,t − λ′i(C
−
)′St − d′iF̂

p
t = ep

i,t + ai,t,
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where ai,t = −λ′i(C
−
)′St − d′iF̂t. Consequently,

1
NT2

N

∑
i=1

T

∑
t=2

(êp
i,t)

2 =
1

NT2

N

∑
i=1

T

∑
t=2

(ep
i,t)

2 +
2

NT2

N

∑
i=1

T

∑
t=2

ep
i,tai,t +

1
NT2

N

∑
i=1

T

∑
t=2

a2
i,t

=
1

NT2

N

∑
i=1

T

∑
t=2

(ep
i,t)

2 + I + I I,

with implicit definitions of I and I I. By Lemma A.1,

I I =
1

NT2

N

∑
i=1

T

∑
t=2

a2
i,t =

1
NT2

N

∑
i=1

T

∑
t=2

[−λ′i(C
−
)′St − d′iF̂

p
t ]

2

≤ 2
NT2

N

∑
i=1

T

∑
t=2

[(λ′i(C
−
)′St)

2 + (d′iF̂t)
2]

≤ 2||C−||2 1
N

N

∑
i=1
||λi||2

1
T

T

∑
t=2
||T−1/2St||2 +

2
N

N

∑
i=1
||di||2

1
T2

T

∑
t=2
||F̂p

t ||2

= Op(N−1) + Op(T−1). (A7)

Consider I;

I =
1

NT2

N

∑
i=1

T

∑
t=2

ep
i,tai,t = −

1
NT2

N

∑
i=1

T

∑
t=2

ep
i,tλ
′
i(C
−
)′St −

1
NT2

N

∑
i=1

T

∑
t=2

ep
i,td
′
iF̂

p
t .

By the Cauchy–Schwarz inequality,∣∣∣∣∣
∣∣∣∣∣ 1

NT2

N
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∑
t=2

ep
i,tλ
′
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)′St
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∣∣∣∣∣

≤ 1√
NT

T

∑
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≤ N−1/2||C−||

 1
T
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∑
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∣∣∣∣∣
2
1/2(

1
T

T

∑
t=2
||T−1/2St||2

)1/2

= Op(N−1),

and ∣∣∣∣∣
∣∣∣∣∣ 1

NT2

N

∑
i=1

T

∑
t=2

ep
i,td
′
iF̂
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t
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N

N
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||F̂p

t ||2
)1/2

= Op(T−1) + Op(T−1/2N−1),
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where the last result holds, because∣∣∣∣∣
∣∣∣∣∣ 1

N

N

∑
i=1

d′ie
p
i,t

∣∣∣∣∣
∣∣∣∣∣ ≤

(
1
N

N

∑
i=1
||di||2

)1/2(
1
N

N

∑
i=1
||ep

i,t||
2

)1/2

= Op(T−1/2) + Op(N−1).

It follows that

I = Op(T−1) + Op(N−1), (A8)

which in turn implies

1
NT2

N

∑
i=1

T

∑
t=2

(êp
i,t)

2 =
1

NT2

N

∑
i=1

T

∑
t=2

(ep
i,t)

2 + Op(N−1) + Op(T−1), (A9)

as was to be shown. �

Lemma A.3. Under the conditions of Lemma A.1,

1√
NT

N

∑
i=1

[(êp
i,1)

2 − (ep
i,1)

2] = Op(
√

NT−1), (i)

1√
NT
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∑
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[(êp
i,T)

2 − (ep
i,T)

2] = Op(
√

NT−1) + Op(N−1/2), (ii)

1√
NT
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∑
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T

∑
t=2

[(∆êp
i,t)

2 − (∆ep
i,t)

2] = Op(
√

NT−1) + Op(T−1/2) + Op(N−1/2). (iii)

Proof of Lemma A.3.

Part (i) is obvious. Consider (ii). From êp
i,t = ep

i,t + ai,t,

1√
NT

N

∑
i=1

[(êp
i,T)

2 − (ep
i,T)

2] =
1√
NT

N

∑
i=1

(2ep
i,Tai,T − a2

i,T)

=
2√
NT

N

∑
i=1

ep
i,Tai,T −

1√
NT

N

∑
i=1

a2
i,T. (A10)

Making use of the fact that ai,t = −λ′i(C
−
)′St − d′iF̂t, we can show that

1√
NT

N

∑
i=1

a2
i,T =

1√
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∑
i=1

[−λ′i(C
−
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∑
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∑
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√
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and ∣∣∣∣∣ 1√
NT

N

∑
i=1

ep
i,Tai,T

∣∣∣∣∣
≤
∣∣∣∣∣
∣∣∣∣∣ 1√
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N

∑
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∣∣∣∣∣ 1
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√

NT−1/2[Op(T−1/2) + Op(N−1)] = Op(N−1/2) + Op(
√

NT−1).

The result in (ii) is implied by this.

For (iii), note that ∆êp
i,t = ∆ep

i,t +∆ai,t, where ∆ai,t = −λ′i(C
−
)′st−d′i f̂t. Therefore, (∆êp

i,t)
2 =

(∆ep
i,t)

2 + 2∆ep
i,t∆ai,t + (∆ai,t)

2. By using this result, we obtain
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(∆ai,t)
2

= I + I I, (A11)

with implicit definitions of I and I I. The order of I I can be obtained in the following fashion:

I I =
1√
NT

N

∑
i=1

T

∑
t=2

[−λ′i(C
−
)′st − d′i f̂t]
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∑
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∑
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√
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∑
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∑
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∑
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∑
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√
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For I,
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By using the fact that st = vp
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Hence,

I = Op(
√

NT−1) + Op(T−1/2) + Op(N−1/2),

and so we obtain
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This establishes (iii) and hence the proof of the lemma is complete. �

Lemma A.4. Under the condition of Lemma A.1,
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Proof of Lemma A.4.

This proof follows from the same steps used in the proof of Lemma 2 in Bai and Ng (2010). We

begin by noting that (êp
i,t)

2 = (êp
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(∆êp
i,t)

2.
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A similar result applies to T−1 ∑T
t=2 ep

i,t−1∆ep
i,t. Hence,
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√
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∑
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[(êp
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+
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i,t)

2 − (∆ep
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√
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as required. �

Proof of Theorem 1.

When p = 0 (p = 1) Lemmas A.2 and A.4 correspond to Lemmas 1 and 2 (Lemma 4) in Bai

and Ng (2010). The proof of Theorem 1 therefore follows from using the same steps as in the

proofs of Theorems 1 and 2 in this other paper. �

Proof of Theorem 2.

As mentioned in Section 3.2, the rate of consistency of F̂p
t is faster than in the case of PC esti-

mation. In view of this, the proof of Theorem 2 when p = 0 (p = 1) follows directly from the

proof of Theorem 1 (3) in Bai and Ng (2004). �
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Table 1: 5% size and size corrected power for intercept-only case (p = 0).

N T PPC
a,0 Pa,0 PPC

b,0 Pb,0 PMSBPC
0 PMSB0

Size
10 10 0.2252 0.2088 0.1304 0.1162 0.0094 0.0094
10 20 0.1756 0.1478 0.098 0.0734 0.0138 0.0064
10 35 0.1834 0.1574 0.1098 0.088 0.0226 0.0138
10 50 0.1776 0.1504 0.1074 0.085 0.0248 0.0136
20 10 0.213 0.2104 0.134 0.131 0.0696 0.0732
20 20 0.145 0.1452 0.0888 0.0842 0.0392 0.0372
20 35 0.123 0.1174 0.0782 0.0718 0.0284 0.0308
20 50 0.1234 0.1116 0.0746 0.0664 0.0316 0.027
35 10 0.237 0.2314 0.1726 0.1676 0.1382 0.1468
35 20 0.1298 0.1392 0.0844 0.0892 0.06 0.0654
35 35 0.1086 0.1014 0.072 0.0664 0.0408 0.0422
35 50 0.1044 0.104 0.0706 0.0698 0.0392 0.0378
50 10 0.2526 0.2564 0.193 0.1988 0.193 0.1976
50 20 0.1362 0.1422 0.095 0.0994 0.0874 0.0838
50 35 0.0992 0.1008 0.065 0.0666 0.0526 0.0528
50 50 0.0976 0.0994 0.0692 0.0698 0.051 0.051

Size-corrected power
10 10 0.0548 0.0708 0.0542 0.0744 0.057 0.0642
10 20 0.1064 0.1572 0.1094 0.158 0.0994 0.138
10 35 0.2296 0.3246 0.2384 0.3298 0.2 0.2738
10 50 0.395 0.5482 0.401 0.5496 0.3434 0.4588
20 10 0.04 0.0926 0.0402 0.095 0.0436 0.0836
20 20 0.1864 0.264 0.1874 0.2684 0.1544 0.215
20 35 0.5046 0.6094 0.5142 0.6116 0.416 0.5014
20 50 0.7996 0.8804 0.797 0.8782 0.6894 0.7794
35 10 0.0282 0.0972 0.0278 0.0976 0.0304 0.0886
35 20 0.2832 0.455 0.2872 0.4536 0.2278 0.3622
35 35 0.778 0.8638 0.7798 0.8632 0.668 0.7574
35 50 0.9778 0.9906 0.9772 0.9888 0.9334 0.9604
50 10 0.0206 0.1172 0.0214 0.1164 0.0256 0.1014
50 20 0.3658 0.5666 0.371 0.5688 0.2906 0.4624
50 35 0.924 0.9642 0.9236 0.962 0.8378 0.9094
50 50 0.9984 0.9998 0.9984 0.9996 0.988 0.9924

Notes: A “PC” superscript signifies that the test is based on original PANIC.
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Table 2: 5% size and size corrected power for trend case (p = 1).

N T PPC
a,0 Pa,0 PPC

b,0 Pb,0 PMSBPC
0 PMSB0

Size
10 10 0.1868 0.1908 0.1692 0.166 0 0
10 20 0.1716 0.151 0.1438 0.1214 0.0082 0.0048
10 35 0.1638 0.139 0.1338 0.1118 0.019 0.0088
10 50 0.1646 0.1422 0.1394 0.1146 0.0236 0.0168
20 10 0.2264 0.2274 0.2168 0.2198 0.017 0.0198
20 20 0.1498 0.1398 0.1342 0.1278 0.0202 0.0186
20 35 0.1308 0.1192 0.1152 0.1048 0.0232 0.0224
20 50 0.1226 0.1158 0.1082 0.0998 0.029 0.026
35 10 0.2668 0.2694 0.2656 0.271 0.065 0.0674
35 20 0.1696 0.1632 0.1654 0.159 0.0356 0.0396
35 35 0.1218 0.1198 0.1184 0.1162 0.0342 0.0352
35 50 0.1096 0.1186 0.1054 0.113 0.0362 0.0356
50 10 0.2978 0.301 0.3034 0.306 0.1072 0.1078
50 20 0.19 0.1896 0.192 0.1908 0.0582 0.0524
50 35 0.13 0.1296 0.13 0.1302 0.0398 0.0444
50 50 0.1068 0.1094 0.1066 0.1094 0.0392 0.0388

Size-corrected power
10 10 0.0448 0.0494 0.0468 0.0494 0.0442 0.0468
10 20 0.0554 0.0558 0.0554 0.0568 0.0546 0.058
10 35 0.0744 0.0902 0.0748 0.0902 0.0736 0.0886
10 50 0.1158 0.1302 0.1156 0.1302 0.1162 0.1316
20 10 0.0464 0.0474 0.0472 0.0474 0.0456 0.0454
20 20 0.0578 0.065 0.058 0.0662 0.057 0.0664
20 35 0.0986 0.1112 0.0982 0.1122 0.0982 0.1108
20 50 0.1766 0.2076 0.1756 0.2074 0.1746 0.207
35 10 0.0466 0.0506 0.046 0.0512 0.047 0.0544
35 20 0.0556 0.0756 0.0554 0.0756 0.0566 0.0736
35 35 0.1236 0.1506 0.1228 0.1494 0.1228 0.1474
35 50 0.248 0.2976 0.2484 0.297 0.2478 0.2942
50 10 0.0434 0.0418 0.0438 0.042 0.045 0.043
50 20 0.0622 0.0798 0.063 0.0802 0.0614 0.0762
50 35 0.1526 0.197 0.1536 0.198 0.1508 0.194
50 50 0.331 0.39 0.3314 0.3892 0.3308 0.3882

Notes: See Table 1 for an explanation.
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Table 3: Correct selection frequency of the estimated number of unit root factors.

p = 0 p = 1
r r1 ρ δ0 r̂1 r̂PC

1 r̂1 r̂PC
1

3 3 0 - 0.9576 0 0.9798 0.0002
3 3 0.5 - 0.977 0.2502 0.991 0.6368
3 3 0.8 - 0.9764 0.9266 0.9896 0.9794
3 3 0.9 - 0.974 0.9788 0.9892 0.9898
3 3 1 - 0.9762 0.9892 0.9916 0.9948
3 2 0 0 0.77 0 0.5922 0.0098
3 2 0.5 0 0.77 0.0188 0.603 0.2532
3 2 0.8 0 0.7792 0.753 0.6074 0.8276
3 2 0.9 0 0.779 0.9176 0.5946 0.8532
3 2 1 0 0.7284 0.9018 0.5724 0.8162
3 2 0 0.5 0.452 0.1274 0.1676 0.481
3 2 0.5 0.5 0.3634 0.238 0.1234 0.3492
3 2 0.8 0.5 0.361 0.3066 0.1084 0.12
3 2 0.9 0.5 0.3738 0.315 0.1168 0.1066
3 2 1 0.5 0.2326 0.2162 0.085 0.0734
3 1 0 0 0.6988 0.6384 0.5042 0.5
3 1 0.5 0 0.707 0.6586 0.5026 0.401
3 1 0.8 0 0.712 0.244 0.5174 0.1986
3 1 0.9 0 0.7128 0.2 0.5156 0.2056
3 1 1 0 0.7014 0.204 0.5124 0.1738
3 1 0 0.5 0.5522 0.7056 0.169 0.447
3 1 0.5 0.5 0.4528 0.5442 0.1182 0.165
3 1 0.8 0.5 0.4502 0.0824 0.1158 0.0092
3 1 0.9 0.5 0.44 0.035 0.1194 0.0068
3 1 1 0.5 0.2334 0.0158 0.0766 0.002
3 0 0 0 1 1 0.989 1
3 0 0.5 0 0.9998 1 0.9888 0.984
3 0 0.8 0 1 0.7762 0.9856 0.3128
3 0 0.9 0 1 0.2952 0.988 0.0994
3 0 1 0 0.9744 0.0382 0.9778 0.024
3 0 0 0.5 0.8622 0.9726 0.4022 0.656
3 0 0.5 0.5 0.777 0.8654 0.3172 0.2818
3 0 0.8 0.5 0.7356 0.3024 0.2864 0.0224
3 0 0.9 0.5 0.732 0.1006 0.29 0.0048
3 0 1 0.5 0.4054 0.0042 0.184 0.0008

Notes: r, r1, ρ and δ0 refer to the true number of factors, the number of unit root factors,
the autoregressive coefficient of the idiosyncratic component, and the autoregressive
coefficient of stationary factors, respectively. The “PC” superscript signifies that the
estimated number of unit root factors is based on original PANIC.
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Table 4: Unit root and cointegration test results.

Common component

k MQ0(k) Reject?
2 -60.9015 yes
1 -2.2407 no
0 - -

Idiosyncratic component

Unit root tests
Test Fi,t Si,t
Pa,0 -3.1485 -3.0226

(0.0016) (0.0025)
Pb,0 -1.7501 -1.7107

(0.0801) (0.0871)
PMSB0 -0.8461 -0.8321

(0.3975) (0.4054)

Pedroni cointegration tests
Test Value p-value
Panel-t -3.2713 0.0005
Group-t -3.3109 0.0005

Table 5: Estimation results of the cointegrating slope.

Common component

MFLS p-value DLS p-value
Slope 1.0013 0.4853 0.9989 0.5126

Idiosyncratic component

Group mean estimation
MFLS p-value DLS p-value

Slope 0.9363 0.0246 0.9354 0.5135

Panel estimation
MFLS p-value DLS p-value

Slope 1.0221 0.0000 1.0235 0.0000

Notes: “FMLS” and “DLS” refer to the fully modified LS and dynamic LS
estimator, respectively. While the group mean estimator is based on between
pooling, the panel estimator is based on within pooling. The reported p-values
test if the slope is equal to zero.
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