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1 Introduction

“...risk management models generally covered only the past two decades, a period of euphoria. Had

instead the models been fitted more appropriately to historic periods of stress, capital requirements

would have been much higher and the financial world would be in far better shape today.”

Alan Greenspan, 1987-2006 Chairman of the US Federal Reserve (FED)

Thanks to their ease of application and to different empirical and theoretical convenient fea-

tures,1 the Value at Risk (VaR) and the Conditional Value at Risk (CVaR) are to date the most

widely used risk measures in finance. Summarizing the market risk in a single value, both risk

measures assess the maximal loss at a specified probability level over a fixed time horizon. The

risk management literature proposes a wide variety of approaches to estimate the VaR and CVaR.

To date, most of the existing methodologies infer their estimates from past returns, using more or

less sophisticated statistical procedures (henceforth: “statistically-based” models). Unfortunately,

the use of past returns leads to backward-looking final results which, especially during crashes,

may poorly predict the dynamics of financial markets. This is opposed to option market data. Re-

flecting the investors’ expectations over different time horizons, option prices are by construction

forward-looking, and so the estimation deriving from them.

Using option market data as input and proposing both a nonparametric and a parametric approach,

this paper tests if the option-based (henceforth: “option-implied”) VaR and CVaR can deliver ac-

curate risk forecasts, and compare their performances with those of the relative statistically-based

risk measures. Performing well both at short and long time horizons and at different risk levels,

our results show that option-implied risk measures can be considered as valid alternatives to the

classical statistically-based risk metrics.

From a theoretical viewpoint, most of results coming from the existing statistically-based models

might be prone to economic and econometric biases linked to the estimation of the future profit and

loss (P&L) distribution. First, even though at different extents, all statistically-based risk models

involve errors in the modeling of the underlying asset volatility, thus being exposed to the “risk

1Refer to Duffie and Pan (1997), Dowd (1999), Artzner et al. (1999), Penza and Bansal (2000) and Jorion
(2007) for an overview on the topic.
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that the risk will change” (see Engle (2009) and Engle (2011)).

Second, as anticipated, statistically-based risk models use historical data as inputs, thus making

the resulting estimates backward-looking by construction. More formally, at each trading day only

one stock return is observable. Being the observations just a single value (a scalar), it is not possible

to infer a density out of it. To tackle this problem, a common approach is to enlarge the amount of

data used in the estimation process by adding historical returns to the current value. Unfortunately,

when piling up historical returns to estimate the future P&L distribution, the last values become

almost uninformative. The obtained P&L distribution cannot be sensitive to the current market

situation; on the contrary, it is strongly dependent to the time window and amount of data used in

the estimation process. As consequence, the resulting statistically-based risk measures are biased

by construction.

Third, it is well-known that the statistical properties of market prices depend on the general

market outlook (e.g.: Danielsson (2002) and Brunnermeier and Pedersen (2009) and references

therein). In stable periods the heterogeneity among investors’ behavior increases, whereas during

high volatility periods agents’ actions become more similar (e.g.: bank runs and flights to safety).

As a consequence, the statistical analysis conducted in stable periods can rarely be helpful during

highly volatile ones, and viceversa.

Fourth, the time horizon of the estimates is a crucial element in risk management and the use

of historical data makes the estimation of long-time horizon risk measures challenging. From an

econometric viewpoint, statistically-based risk metrics often need to rely on a proper estimation

of the market volatility. Brownlees et al. (2011) show that several ARCH models perform well at

short time horizons, while results are often unsatisfactory at medium and long time horizons. To

date, statistically-based risk measures at time horizons longer than one day are obtained with more

or less complex numerical transformations.2 Unfortunately, how to economically justify most of

these transformations is still an open question. All these points have great practical relevance, as

short-time horizon estimates might not be of great help if one has to liquidate a large (and possibly

illiquid) financial position.

Option market data can possibly overcome the aforementioned problems. First, compared to

2A very common approach is to estimate a one day risk forecast and extend it to a longer time horizon by
multiplying it times the square root of the time horizon desired.
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historical returns, option market data have a superior informative power, especially as concerns

the modeling of the underlying asset volatility.3 Second, the implied moments of option market

data reflect investors’ expectations, thus being a naturally forward-looking indicator of agents’ be-

liefs. Third, at each observation date, option market data have a matrix structure, the so called

option cross-section, which reflects the investors’ future beliefs across different strikes and times-to-

maturity. Both dimensions, strike prices and times-to-maturity, are important in risk management.

Through the different strike prices, it is possible to infer the desired future P&L distribution, with-

out the need of additional historical data. Through the different times-to-maturity, it is possible to

naturally extract option-implied risk forecasts with a time horizon equal to the time-to-maturity

of the options. All these properties make the daily option cross-section an interesting input to use

to infer the future P&L distribution.

Surprisingly, despite the increasing attention of academics and practitioners on the predictive con-

tent of derivative securities, the use of option market data in risk management is still widely

unexplored. To the best of our knowledge, only Äit-Sahalia and A.W.Lo (2000), Bali et al. (2011),

Samit (2012), Mitra (2015) and Huggenberger et al. (2018) and reference therein relate the topic.4

After presenting the option-implied methodology developed by Barone-Adesi (2016), this paper

proposes an extensive empirical analysis on the performances of the option-implied risk measures

and it compares them with the statistically-based ones. Several backtesting results show that the

option-implied VaR and CVaR estimates are accurate in the short (weekly) and long (monthly)

term. On a relative level, the option-implied methodology outperforms the statistically-based

VaR and CVaR estimated with an asymmetric GJR-GARCH model with nonparametric innova-

tions estimated with the filtered historical simulated (FHS) approach of Barone-Adesi et al. (1999)

(henceforth denoted as GJR-GARCH-FHS). The choice of the volatility model stems from Engle

and Rosenberg (2002), Barone-Adesi et al. (2008), Brownlees et al. (2011) and ? who show that,

for the S&P 500, the asymmetric GJR-GARCH model of Glosten et al. (1993) is the best performer

3From Merton (1973) this is a large and still very active stream of literature.
4Less directly related but still worth mentioning are Bali et al. (2011), Xing et al. (2010), and Yan (2011)
that show how option-implied skewness or jump risk measures have significant explanatory power in pricing
the cross-section of asset returns.
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among a big family of different discrete volatility models.5 The use of FHS innovations is to better

capture the nonparametric features of financial markets.

Technicalities aside, the main difference between the two approaches (option-implied and statistically-

based) is the type of information contained into the input data. Our results show that inferring the

risk measures from option market data has both theoretical and practical advantages. Results could

be of interest for regulators, central banks and single companies. Regulators and central banks can

derive risk estimates of large companies without knowing the precise composition of their portfolio.

Large companies can compare the option-implied estimates with those delivered by their internal

models.

The remainder of the article is as follows: Section 2 reviews the concepts of VaR and CVaR. Section

3 introduces and derives the option-implied VaR and CVaR, showing how to link the risk measures

presented in the previous section to the option market data. In this section we present both the

parametric and nonparametric approach to derive the option-implied VaR and CVaR. Section 4

describes the dataset. Section 5 presents the empirical results of the nonparametric and parametric

option-implied VaR and CVaR. Using stock market data, the same risk metrics are also estimated

using the GJR-GARCH-FHS model. Section 6 analyses and compares the backtesting results for

all the aforementioned risk estimates. Section 7 concludes.

2 VaR and CVaR

This section quickly recalls the definitions and the main theoretical properties of the VaR and

CVaR. Defined as the quantile of the projected P&L distribution, the VaRα
t,T is the maximum

theoretical loss forecasted at current time t, associated with a generic portfolio value, St,T , at a

given time horizon, T< ∞, and at a given risk level (1 − α), where α ∈ [0, 1] determines the

chosen risk level. Formally, for t < T < ∞, the V aRαt,T is defined as the α-quantile of the return

distribution:

VaRα
t,T =

∫ K

−∞
f(St,T )dSt,T = α (1)

5We also performed the same analysis on many other models e.g.: the variance-covariance model, the histor-
ical model, the expected weighted moving average model and many different ARCH specifications. Results
confirm the findings of the cited literature. Being the best performer among all models, and for ease of space,
we only propose the GJR-GARCH-FHS estimates. All other results are available upon request.
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where f(St,T ) is the probability distribution function of the future portfolio values based on its

current value. Because of its forward-looking nature, the pricing probability distribution of the

future portfolio values, f(St,T ), is the most challenging element to estimate. Statistically-based

risk measures usually extract this future distribution from past data, thus making the final risk

measure backward-looking by construction.

Although empirically easy to implement and practically appealing, the lack of sub-additivity and

the impossibility to quantify the risk over the chosen quantile make the VaR an incomplete and

unreliable risk measure. The lack of sub-additivity6 implies that the VaR is not even weakly co-

herent7 and discourages diversification.

Proposed by Artzner et al. (1999) and supported by the Basel Committee, the CVaR over-

comes most of the aforementioned VaR limitations. The CVaRα
t,T is formally defined as the time t

conditional expected loss determined in Equation (1) at level α:

CVaRα
t,T =

1

α

∫ K

−∞
L(St,T )f(St,T )dSt,T L(St,T ) = St − St,T (2)

where L(St,T ) defines the predicted loss function. It is worth noticing that, as for the VaR, also the

CVaR requires the forecast of f(St,T ). While the CVaR accounts for losses exceeding the VaR and

is coherent, the lack of elicitability (Gneiting (2011) and Ziegel (2014)) makes the CVaR inferior

to the VaR when performing a backtesting analysis.8 Directly linked to the historical nature of

the estimates, the general concept of elicitability allows one to perform meaningful comparisons

among models based on the backtesting results. While the VaR is a quantile and is thus naturally

elicitable, the CVaR is not.

6The VaR is sub-additive only if all marginals of the joint distribution are elliptical. This condition coin-
cides with the assumption underneath the Markowitz’s variance-minimizing portfolio, which makes the VaR
calculations not even needed once that the variance is known (Markowitz (1952)).
7A risk measure is weakly coherent if it lacks of the positive homogeneity (Carr et al. (2001)).
8According to Acerbi and Székely (2014) the CVaR is only backtestable if the P&L distribution is known.
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3 Linking VaR and CVaR to the option market

This section shows how to derive the option-implied VaR and the CVaR. As a main advantage,

inferring the risk measures from the option cross-section leads to economically-grounded and nat-

urally forward-looking risk forecasts.

As defined in Equation (1), the VaRα
t,T is a quantile, a single numeric value determined at a spe-

cific threshold over the cumulative P&L distribution. In the context of an Arrow-Debreu economy

(Arrow and Debreu (1954)) and following Breeden and Litzenberger (1978), the first derivative of

a European Put price, pt,T = e−rt(T−t)
∫K
0 (K − ST )f(St,T )dSt,T , over its strike price, K, is:

dpt,T
dK

=
d[e−rt(T−t)

∫K
0 (K − ST )f(St,T )dSt,T ]

dK
(3)

= e−rt(T−t)
∫ K

0
f(ST )dSt,T (4)

= e−rt(T−t)F (K) (5)

= e−rt(T−t)α (6)

where rt is the current market risk-free rate such that e−rt(T−t) discounts the future expected payoff

at today t, and α is the risk level (i.e. 1 - confidence level), as defined in Section 2. With no loss of

generality, the lower bound of the integral has been set to 0, reflecting the economy of an investor

holding a portfolio with limited liability (i.e.: where the maximum loss is equal to 100%). It follows

that for each date t, the option-implied VaRα
t,T is the difference between the initial portfolio value,

St, and the strike price of a European Put option at level α:

VaRα
t,T = St −Kα

t,T (7)

where Kα
t,T is the strike price of the option contract traded at time t, with maturity T , at level α.

Being Kα
t,T fully option-based and not requiring any past data, the proposed option-implied VaR

is naturally forward-looking.

The use of Put options links the analysis to the left tail of the distribution. The use of Call options

leads to the same result but for right tail of the distribution thus identifying the upside risk. A

right tail VaR is a useful risk measure for an investor holding a short position in the underlying
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asset. The option-implied VaR for a short portfolio is:

VaRα
t,T = Kα

t,T − St (8)

where Kα
t,T is now the strike price identified by α of an European Call option9.

Following the same intuition, it is possible to derive the option-implied CVaR. Starting from

the definition of a compounded Put option:

ert(T−t)pt,T =

∫ K

0
(K − ST )f(St,T )dSt,T (9)

and setting the current stock value of the loss function as St = K + St − K, it follow from

Equations (1), (2) and (9) that the option-implied CVaRα
t,T based on the left tail of the distribution

(downside risk) is:

CVaRα
t,T = VaRα

t,T + ert(T−t)
pαt,T
αt,T

(10)

where pαt,T is the current price of the compounded Put option identified by the risk level α. Just

relying on the option market data, the option-implied CVaRα
t,T equals the sum of the corresponding

VaRα
t,T and an additional term, which equals the compounded Put price divided by the probability

of that negative scenario, i.e. alpha. As for the VaR, the upside risk (right tail) option-implied

CVaR can be derived from Call prices and is defined as:

CVaRα
t,T = VaRα

t,T + ert(T−t)
cαt,T
αt,T

(11)

where cαt,T is the current price of the compounded Call option identified by the risk level α. It is

worth noticing that all quantities in Equations (7), (8), (10) and (11) are readily available in the

market. The only parameter to estimate is the threshold αt,T , which is also needed to determine

Kα
t,T , the value of the strike price at the desired risk level. In general, αt,T can be estimated either

i) nonparametrically, i.e.: using more or less sophisticated numerical differentiation approaches,

or ii) parametrically, i.e.: by specifying an option pricing model. In this paper αt,T is estimated

9In addition to the stock market, the knowledge of the upside risk is also of interest in the commodities
market, where sellers (buyers) are mostly affected by the downside (upside) risk (Barone-Adesi et al. (2019))
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i) nonparametrically, using the interpolation method of Barone-Adesi and Elliot (2007) and, ii)

parametrically, under a Black and Scholes economy. While the nonparametric method provides

more accurate results, the parametric one is less data intensive.

For the nonparametric approach, the time series of αt,T is extracted from the daily cross-section

of European Put/Call options. Free of any distributional assumption, the estimates based on this

methodology are denoted as “model-free” (MF) option-implied risk measures. Following Barone-

Adesi and Elliot (2007) we discretize equations (3)-(6) and define the MF αt,T as the average of

the first order condition of three contiguous option prices (e.g.: Put), with maturities equal to the

desired investment horizon T :

αt,T = ert(T−t)

[
1

2

(
dpUP

t,T

dKUP
+

dpDOWN
t,T

dKDOWN

)]
(12)

= ert(T−t)
[

1

2

(
p3 − p2
K3 −K2

+
p2 − p1
K2 −K1

)]
(13)

where p3 > p2 > p1 and K3 > K2 > K1. Equation (13) holds if K3 − K2 = K2 − K1. In

presence of non equidistant option prices, Equation (13) can be easily generalized by performing a

weighted average with the weights equal to the distance among the strike prices. Lastly, as defined

in Equation (6), the obtained value is corrected for the daily market risk-free rate, rt(T − t).

Similarly, in the case of a short portfolio αt,T can be either derived using Call options:

αt,T = ert(T−t)

[
1

2

(
dcUP
t,T

dKUP
+

dcDOWN
t,T

dKDOWN

)]
(14)

= ert(T−t)
[

1

2

(
c1 − c2
K1 −K2

+
c2 − c1
K2 −K1

)]
(15)

where c1 > c2 > c3 and K1 > K2 > K3.

Two features make the proposed MF approach numerically efficient and accurate. First, it

eliminates the first-order error in the Taylor expansion of the derivative. Second, it eliminates the

first-order error due to the implied volatility changing across strike prices. As a drawback, the

derivation of αt,T might be a problem for non liquid assets. Given the satisfactory level of liquid-

ity of the option market data used in this paper (European Put and Call options written on the

S&P500 Index) we do not need to implement any extrapolation/smoothing technique, and we leave
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the dataset almost untouched. In case of necessity, it is indeed possible to adopt one of the many

numerical techniques present in the literature to extrapolate/smooth the option pricing curve and

have a more populated final dataset.

Differently from the nonparametric MF approach, the option-implied parametric methodology

implicitly assumes that the observed option prices are generated from a model. In this paper we use

the Black and Scholes (B&S) pricing model and denote the estimates based on this methodology as

the “Black and Scholes” (B&S) option-implied risk measures. Following Black and Scholes (1973),

αt,T is the probability that the today option contract will expire in-the-money at expiration T . For

example, for a European Put option:

αt,T = Pr(ST < Kα
t,T )

= N(−d2)

= 1−N

 ln( St
Kα
t,T

) + (rt − σ2
t
2 )(T − t)

σt
√

(T − t)

 (16)

The values of αt,T obtained numerically in equation (13) are compared with the ones derived in

equation (16) at the same confidence level. As presented in the empirical section, the nonparamet-

ric nature of the MF approach delivers more reliable estimates, while the B&S is a valid alternative

for low liquidity periods of the option market. Using Call options, the probability that the today

option contract will expire in-the-money at expiration T is Pr(ST > Kα
t,T ) = N(d2).

The proposed option-implied MF and B&S risk estimates are obtained from a small number

of option prices, a characteristic which makes the resulting estimates more robust with respect to

those ones based on the VIX and SKEW indexes, which instead require the existence of an infinite

amount of Put and Call options. Requiring an infinite amount of options traded, both the VIX

and the SKEW indexes may be more prone to numerical errors (e.g. truncation errors).

It is worth noticing that the risk-neutral measure can be inferred from option market data using dif-

ferent econometric approaches (see Bahara (1997) for a comprehensive summary). Unfortunately,

aside from the methodologies that use or extend the nonparametric approach of Breeden and Litzen-

berger (1978), most of the alternatives either rely on parametric assumptions, or require possibly
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approximative (more or less complex) numerical simulations to infer the entire risk-neutral density.

For example, simulated densities might not integrate to one and/or need to rely on a paramet-

ric extreme value theory approach to complete and model the tails of the distributions (Figlewski

(2008)), thus imposing a distribution in the CVaR computations. These drawbacks may potentially

bias the CVaR estimates. Bliss and Panigirtzoglou (2004)(2004) estimate the risk-neutral measure

after a second order interpolation and extrapolation of the implied volatility. The cubic smoothing

spline interpolation uses the options vega as a weight. Indeed, this approach puts most of weights

at-the-money thus under-performing in the tails of the distribution and possibly impacting on the

relative VaR and CVaR computations.

The nonparametric approach nature of αt,T , along with the no need of historical data for the esti-

mation of the option-implied VaR and CVaR have interesting economic and econometric features.

Economically, the MF option-implied VaR and CVaR are not simulated but inferred from current

market data. This makes our option-implied risk measure similar to the Economic measures pro-

posed by Äit-Sahalia and A.W.Lo (2000), that the authors consider economically stronger than the

Statistical measure inferred from historical data. Econometrically, being free of any simulation and

not relying on any parametric assumption, the option-implied risk measures can better capture the

nonparametric nature of the finance markets.

As a disadvantage, the proposed option-implied risk measures depend on the option market liquid-

ity. Therefore they can only be used for assets with traded and liquid options.

In conclusion: while risk estimates should provide economically consistent and econometrically ro-

bust results at different time horizons, this is hardly achievable with most of the statistically-based

risk models, while it becomes possible with the proposed option-implied MF approach.

4 Dataset

Supported by the evidence10 that a large class of investors holds a market portfolio as a form of

investment, the chosen underlying asset is the S&P 500 Index. The methodology presented in

10As reported by different surveys, a big fraction of U.S. investors relies on indexing policies for investment.
Analysing 60 years of market data, Bogle (2005) shows how, since 2000, index funds account for roughly
one-third of equity fund cash inflows and represent about one-seventh of the total amount of equity fund
assets.
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Section 3 is tested on the European Put and Call options (SPX) traded on the S&P 500 Index with

maturity of 7 and 30 days. Options with maturity of 7 and 30 days11 are used to estimate the weekly

and monthly risk metrics, respectively. To propose a broad empirical analysis, the risk levels used

for the weekly time horizon are 1%, 2.5% and 5%, while for the monthly time horizon are 5%, 10%

and 15%. To lighten the notation in the paper, the subscript (t, T ) of the VaR and CVaR estimates

indicates a time interval equal to 7 or 30 days for the weekly and monthly estimates, respectively.

It will be made clear whether we will refer to estimations with a short (7 days - weekly) or a long

(30 days - monthly) time horizon.

Our analysis is thus performed on two different datasets, one composed by weekly options and

another one by monthly options. Starting from January 1, 2012 to August 31, 2015 the sample

period of the weekly estimations consists of 159 weekly observations. Introduced by the CBOE

in October 2005, it is only from the beginning of 2012 that the liquidity of the S&P 500 weekly

options is high enough to implement the option-implied methodologies presented in the previous

section. Accounting for more then 40% of the total volume of options traded on a daily basis in

the US market12, weekly options are now an interesting tool to better understand the behavior of

markets and investors.

Starting from January 1, 2005 to August 31, 2015 the sample period of the monthly estimations

consists of 128 weekly observations. The monthly analysis allows us to include into the analysis the

financial and credit crisis. Given the monthly expiration convention, the presented risk measures

refer to the third Thursday of each single month. All contracts have strike price intervals of 5$ for

in-, at- and out-of-the-money strike prices and of 25$ for deeply-out-of-the-money strike prices. To

discard possible mispricings, prices violating classical no-arbitrage lower bounds are excluded from

the dataset:

pt,T ≥ max[K e−rt(T−t)−St e−dt(T−t), 0] (17)

ct,T ≥ max[St e−dt(T−t)−K e−rt(T−t), 0] (18)

11The VIX Index, probably the most famous options-based risk measures, also has a 30 days time horizon
and is derived from a portfolio of Put and Call options written on the S&P 500 Index with 30 days to
maturity.
12The most traded weekly options have Friday, Wednesday and Monday expirations. The great success of
the S&P 500 weekly options convinced the CBOE to propose other similar products, e.g.: new even shorter
expirations (2/3 days) and new underlying assets (weekly VIX). For more details, see the CBOE website.
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where dt is the continuously compounded dividend at time t. Moreover, following the literature, all

quotes with a price lower than 3/8 and those with zero trading volume and/or zero open interest

have been removed from the dataset.

From the time series of the daily zero coupons, the curve of the daily risk-free interest rates is

obtained by numerical interpolation. For each time-to-maturity (T − t), the previous (T − t)− and

next (T − t)+ period zero-coupon whose values straddle the time (T − t) are linearly interpolated.

As it concerns the dividend, the time series of S&P 500 Index dividend yield from January 1, 2012

to August 31, 2015 (weekly) and from January 1, 2005 to August 31, 2015 (monthly) are used to

compute the ex-dividend spot Index level. All presented data are from OptionMetrics.

To validate the performances of the option-implied VaR and CVaR, these risk measures are com-

pared with the statistically-based VaR and CVaR derived using a GJR-GARCH-FHS model and

going back 10 years of data to estimate the GARCH parameters (details in Section 5). For the

GARCH estimation, daily prices on the S&P500 Index are obtained from CRSP. We use data from

January 1, 1995 to August 31, 2015.

5 Empirical Analysis

Following the methodology presented in Section 3, the weekly and monthly option-implied MF

and B&S13 CVaR and VaR are derived based on the left and right tails of the distribution. For

the entire analysis the risk levels are set at 1%, 2.5% and 5% (5%, 10% and 15%) for the weekly

(monthly) estimates.

Table 1 collects summary statistics for the option-implied MF and B&S VaR and CVaR. The table

is so organized: CVaR (VaR) results are on top (bottom); each section has on the left (right) side

the left (right) tail results estimated with Put (Call) options. Finally, each section has in the upper

(lower) part the weekly (monthly) results. As expected, the difference between CVaR and VaR is

bigger for the left tail of the distribution, thus showing a pricing difference between Put and Call

options. Also, the difference between the MF and B&S approach is visible in the maximum and

13While we analyse and present summary statistics also of the option-implied B&S the focus of the paper
will primarily be on the nonparametric MF approach. As anticipated in fact, the nonparametric nature of
the MF approach provide more reliable data than the parametric B&S methodology, that nonetheless is a
valid alternative in case of data shortage.
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minimum values, with the nonparametric MF always presenting more dispersed data, as confirmed

by the higher standard deviation. The same difference is also again present between the left and

the right estimates, with the former being always greater than the latter.

To support our findings and provide an alternative intuition, Table 2 reports similar basic statistical

information about the weekly and monthly option-implied ∆α,t = CVaRα,t −VaRα,t for both tails

of the distribution. From Equation (10), the quantity ∆α,t represents the future market beliefs with

respect to the negative scenario occurring with α% probability. This quantity is highly sensitive

to the future market expectations. In periods of market turmoil, for example, investors are more

risk averse and the prices of Put options are likely to increase, thus implying a larger difference

between the CVaR and VaR estimates.

As the option-implied methodology strongly relies on the liquidity of the option market, the upper

part of Table 3 reports the proportion of missing values for each risk level. Over the sample period

under consideration the liquidity of weekly Put option contracts (1st row) is always satisfactory as

the proportion of missing estimates is above 1% only for the lowest risk level.

The same analysis is then repeated using Call options, thus assuming a portfolio of short positions.

The derivation of the risk measures based on the right tail of the distribution has two interesting

properties. First, it provides a benchmark for the estimates obtained using Put options. Second, it

can provide nonparametric information on the degree of tail asymmetry in the underlying returns

distribution. Based on the right tail of the distribution, both the CVaR and the VaR are decreasing

in the risk level and display similar patterns to the corresponding metrics based on the left tail,

both on a weekly and monthly basis. However, keeping the risk level α fixed, both the weekly and

monthly MF VaR and CVaR based on the right tail are almost always below those obtained from

the left tail. The second row of Table 3 and the left lower portion of Table 2 report the proportion of

missing data and the summary statistics on ∆α,t for the weekly and monthly estimates based on the

right tail of the distribution, respectively. In almost all cases the number of missing observations is

larger compared to the one for the left tail, thus confirming the higher liquidity of out-of-the-money

Put options compared to out-of-the-money Call contracts. It is also worth noticing that, for each

α level, the average ∆α,t are much lower than the ones based on the left tail. For α fixed, this

discrepancy is driven by the price of the identified option, thus confirming that out-of-the-money

Call options are, on average, cheaper than the corresponding out-of-the-money Put options.
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The three upper panels of Figure 1 show the parametric MF weekly CVaR (thicker in blue) and

VaR (in red) for α equal to 1% (top), 2.5% (middle) and 5% (bottom). As expected, the picture

shows a more volatile time series for α at 1%. This is a direct consequence of the price distribution,

in particular into the deepest part of the left tail of the distribution. Also, the estimates do not sub-

stantially vary across the whole sample period, except for a different behavior at the three risk level

for to the so-called China’s “Black Monday” (happened in August 2015), which carried a correction

of about 10% on the value of S&P 500 Index. Whilst the three risk levels show different behavior

under the MF, they all have been able to promptly react and sometimes to anticipate it (at 2.5%).

The three upper panels of Figure 2 show the parametric MF monthly CVaR (thicker in blue) and

VaR (in red) for α equal to 1% (top), 2.5% (middle) and 5% (bottom). As for the weekly results,

the trend among the three risk levels is overall similar but more volatile than the weekly estimates.

Spanning over a larger time period, it is above all during the financial and credit crisis (June 2007

to December 2012) that both the MF CVaR and VaR exhibit several pronounced upward spikes

across all risk levels, thus reflecting the negative outlook of the US market in those periods. For

example, the biggest spike within the recession area represents the pre and post Lehman Brother

failure (September 15, 2008). The subsequent jumps correspond to the downward S&P 500 move-

ments of June 2010 (S&P 500 down of $200 at $1022.58 from $1217.28 of two months before) and

the period of turmoil from July to November 2011 during which the S&P 500 index dropped from

above $1300 losing more than $200. At the rightmost part of the figure, also the crisis of Summer

2015 is well identified. As expected, and above all for the first part of the sample, some values are

missing. This is a direct consequence of the option market liquidity, that improved substantially

over time. Similar but unreported results hold also for the MF CVaR and VaR estimates based on

the right tail of the distribution.

To provide an alternative to the more data intensive MF approach, we repeat the same analysis,

but under the assumption that the observed option prices are generated by a Black and Scholes

pricing model with αt,T derived as defined in Equation (16). Under the B&S approach, αt,T is

derived with just a single option price. First, for both European Put and Call options, we back-out

14



the option-implied volatilities by numerical inversion from the daily S&P 500 option market prices:

σIVt = f(St,K, rt, dt, τ, pt/ct) (19)

where the time-to-maturity τ is fixed equal to 7 or 30 days for weekly and monthly options,

respectively. Obtaining αt,T through Equation (16), we then find Kα
t,T , that is the strike price

corresponding to the desired alpha P (ST < Kα
t,T ) = N(−d2). The same holds for the Call options,

with Pr(ST > Kα
t,T ) = N(d2). Once the time series of Kα

t is derived, the weekly and monthly

B&S VaR and CVaR are computed following Equations (7) and (10). As for most of parametric

approaches, the biggest advantage of this approach is the existence of a closed-formula solution for

the value of the threshold αt,T . Indeed, although one option is sufficient to determine alpha, the

discreteness of quoted option prices in general requires interpolating between two adjacent strike

price to compute the strike price at the desired α level.

The lower right part of Table 3 reports the proportion of missing values for the entire B&S sample.

As expected, the proportion of missing data across all α specifications is almost zero and always

smaller than that obtained under the MF methodology (upper right part of Table 3). The higher

stability of the B&S values conflicts with the accuracy of the final results. A reduced smile effect

is remarkable into the deepest area of the tails, where the B&S model provides approximative

estimates. Among others, these effects can be summarized by the difference of alpha under the two

methodologies:

Γt = KαMF

t −KαBS

t (20)

Table 4 reports summary statistics of Γt for both the weekly (upper part) and monthly (lower part)

observations. For both time horizons and tails, the behavior of the estimates is overall comparable

both in terms of mean and median values. As expected, the min-max range is larger, thus confirm-

ing the non-normality of the dataset. Interestingly, also the highest and lowest statistical values

show a similar behavior across the sample for both Put and Call options and for both short and

long time horizons.

The three lower panels of Figure 1 show the parametric B&S weekly CVaR (thicker in blue)

and VaR (in red) for α equal to 1% (top), 2.5% (middle) and 5% (bottom). At α = 1%, both the
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B&S CVaR and VaR present a few large spikes, which are direct consequence of the high (possibly

irrational) Put prices on those dates. Overall, for both the B&S CVaR and VaR the trends of

the time series are more homogeneous than the MF ones. Also, and again differently than the

MF approach, the B&S estimates at all risk levels capture very similarly (although with different

magnitudes) the China’s “Black Monday” . The three lower panels of Figure 2 show the parametric

B&S monthly CVaR (thicker in blue) and VaR (in red) for α equal to 5% (top), 10% (middle) and

15% (bottom). Once more, the time series at all risk levels are very similar and the period from

June 2007 to December 2012 coincides with the highest VaR and CVaR values. While at different

magnitude, it is interesting to see how also the parametric approach is able to forecast the quiet

pre-crisis period and anticipate the subsequent turmoil caused by the financial crisis. As expected,

the parametric B&S has almost no liquidity problem and the time series are almost complete. Sim-

ilar but unreported results hold also for the B&S CVaR and VaR estimates based on the right tail

of the distribution.

Compared with the MF results, while the mean and median values of the weekly ∆α,t measures

are comparable, the min-max range substantially differs. Keeping α and the compounding effect

fixed, the two methodologies work differently into the tails of the distribution. Both for the weekly

and monthly estimates, once compared with the nonparametric approach (presented in the right

part of Table 2) the parametric approach presents a more “conservative” behavior. At most levels

in fact, the extreme values are less dispersed and the central moments are lower than nonparamet-

ric results. At all levels, values that differ from the log-normal distribution implied by the B&S

approach are evidence in favor of a nonparametric and non-normal distribution of returns, thus

justifying the use of a data driven MF approach. For the monthly estimates, as Kα
t grows, the

B&S VaR and CVaR estimates decrease and the distance between the two measures, ∆α,t, increases.

Economically, the risk premium is what makes the option-implied and the statistically-based

historical risk measures different. It is well-known that the risk premium is unobservable and very

difficult to estimate (Damodaran (2016)). Indeed, investors are generally not risk-neutral and the

ex-ante quantification of their risk preferences is not a trivial task to perform, as their subjective

probabilities are unobservable quantities. It follows that the absence of a reliable methodology
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to estimate the risk premium is a big issue faced by any risk metric under the physical measure.

Acting among the risk-neutral and the physical measures, the pricing kernel is the collector of the

investors’ risk preferences. These risk preferences become smaller the shorter the time horizon in

consideration. By theory in fact, the pricing kernel converges to unity as time to expiration shrinks:

S = erT q · 1 = eRT p · 1 (21)

where S is the expected payoff of a contingent claim under the risk-neutral measure, q, and under

the physical measure, p, respectively. If the no arbitrage assumption applies, the risk-neutral value

grows at the risk-free rate, r, whereas the physical value grows at the risk-adjusted risk-free rate, R.

As the time to maturity T approaches zero, both quantities converge to the same state price density,

S; conversely, when T increases their divergence increases at the rate (R− r)T . The impossibility

of directly observing both the physical measure and the risk premium makes the estimation of the

pricing kernel rather problematic. If follows that, as long as T is not too big, adopting a model-free

risk-neutral approach might be convenient. For example, the proposed option-implied risk measures

do not require any numerical implementation or estimation of the risk premium to infer the future

P&L. This might be an advantage above all in periods of turmoil, as the risk-neutral risk measures

deliver more conservative (with respect to the statistically-based ones) risk metrics. This approach

is followed also by Martin (2017), who shows that under the physical measure the probability of

observing a crash, αp ∝
[
∂pt
∂K −

pt(K)
αFt

]
, is always lower than the corresponding probability under

the risk-neutral measure, αq ∝ ∂pt
∂K . As a result, at any risk level the identified option under the

physical measure has a higher strike compared to the one identified under the risk-neutral measure,

thus making the VaR and CVaR estimates under the physical measure less conservative.

Finally, to test the performances of the option-implied risk measures we compare results of the

option-implied VaR with a statistically-based VaR calibrated on an GJR-GARCH-FHS model. The

choice of the model is to capture the clustering and the heteroskedastic feature shared by the market

returns (GARCH), through an asymmetric autoregressive model (GJR) with empirical innovations

(FHS). To capture these features, the GJR-GARCH-FHS model is fitted to the historical log-returns

of the S&P 500 index. Starting from January 1, 2005 GARCH parameters are estimated using 10
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years of daily observations, thus starting from January 1, 1995 for a total of 2279 daily observations.

The Portmanteau test of Ljung and Box (1978) and the Lagrange Multiplier (MA) ARCH test of

Engle (1984) present evidence that the proposed model and the number of observations used deliver

robust results. Formally, the GJR-GARCH-FHS model is defined as:

log

(
St
St−1

)
= rt = a+ ρrt−1 + εt (22)

εt =
√
σ2t zt (23)

zt ∼ ft(0, 1) (24)

σ2t = ω + βσ2t−1 + αε2t−1 + γIt−1ε
2
t−1 (25)

It−1 =


1, if εt−1 < 0,

0 if εt−1 ≥ 0.

(26)

where zt defines the empirical (FHS) innovation while Equation (25) model the returns volatility

and Equation (26) accounts for the leverage effect (Black (1976)) through the indicator function.

Table 5 collects summary statistics on the estimated physical parameters θ = (ω, α, β, γ) obtained

by Pseudo Maximum Likelihood (PML). Then, using the set of estimated GARCH parameters and

the empirical innovations, i log-returns are simulated:

Ŝi,t = Stexp

(
µ− σ̂2t

2

)
dt+ σ̂2t dWt (27)

where St represents the current value of the S&P 500 Index, the drift input µ accounts for the

market risk premium, σ̂2t is the simulated variance, dt is fixed at one day and dWt models the

randomness through the empirical innovations, zt. As anticipated above, any estimation of the

physical measure depends on the risk premium. In this paper, we follow Merton (1980) and much

of the literature and we fix the risk premium at 8%.14 From the estimated i log-returns, the future

probability density functions (pdf) and cumulative density functions (cdf) are extracted through

a kernel regressions.15 Results show that, over the sample period in consideration, the distance

14The 8% of risk premium proposed by Merton (1980) might be too hight given the different market condi-
tions. As such we repeated the same analysis but with a risk premium of 4% and 6%. Unreported results
confirm the robustness of the approach and are available upon request to the authors.
15Extra details concerning the estimation in Barone-Adesi et al. (2008) and ?.
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between the statistically-based (GARCH) CVaR and VaR are more stable than the ones obtained

with the option-implied approaches.

6 Backtesting

In this section we test the validity of our estimates performing different types of backtests. Back-

testing refers to the validation of an estimated risk measure based on realized losses. The chosen

backtesting measures for the VaR are: the number of times that an option expires in-the-money,

the Binomial test (Bin), the Traffic Light (TL) test, the Proportion Of Failure (POF) test, the

Time Until First Failure (TUFF) test, the Conditional Coverage Independence (CCI) test, the

Conditional Coverage (CC) test, the Time Between Failure Independence (TBFI) test and the

Time Between Failure (TBF) test.

The number of times that an option expires in-the-money is defined as:

N∑
t=1

I[ST<Kα
t,T ]

(28)

N∑
t=1

I[ST>Kα
t,T ]

(29)

where ST is the price of the underlying asset at the maturity of the option contract (i.e. T =

7, 30 days for weekly and monthly estimates, respectively), Kα
t,T is the strike price of the option

at the chosen level α, I[·] is the indicator function, and N is the number of observation dates.

Equations (28) and (29) refer to the left and right tail of the distribution, respectively.

The Binomial (Bin) test of Jorion (2011) compares the observed with the expected number of

exceedances through the following test statistic:

Bin =
I −Np√
Np(1− p)

(30)

where I represents the number of exceedances observed, p is a positive value between 0 and 1 and

is defined as p = 1− α, and N is the total number of observations.

Proposed by the Basel Commitee, the Traffic Light (TL) test compares the number of observed

and expected exceedances. Given a number of exceedances, I, this test computes and ranks the
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probability of observing up to I exceedances. While the Binomial test - as well as all other tests

- only gives two mutually exclusive results, this test classifies risk into three regions: red, yellow

and green (R, Y and G respectively). The red region is linked to a number of exceedances whose

probability goes over 99.9%, the probability of the yellow are goes from 99.9% up to 95% while the

green area refers to all values below the yellow area.

The POF and TUFF tests refer to the Proportion Of Failure and the Time Until First Failure tests

of Kupiec (1995). Starting from the Binomial test and adding a likelihood ratio test, the POF test

suggests that the VaR estimates can be rejected if the likelihood ratio exceeds a given critical value.

Asymptotically distributed as a chi square with one degree of freedom, the POF test statistic is

defined as:

POF = −2Log

(
(1− p)N−IpI(

1− I
N

)N−I ( I
N

)I
)

(31)

Still based on the likelihood ratio - but with a geometric distribution - the TUFF test checks when

the first exceedance has occurred through the following statistic:

TUFF = −2Log

(
p(1− p)d−1(
1
d

) (
1− 1

d

)d−1
)

(32)

where d accounts for the number of days until the first rejection. Also this statistic is asymptoti-

cally distributed as a Chi squared distribution with one degree of freedom.

The CCI and CC tests refer to the Conditional Coverage Independence and the Conditional Cov-

erage of Christoffersen (1998). Both tests check if the observed failures are among them dependent

between consecutive days. Asymptotically distributed as a χ2 with one degree of freedom, the CCI

test statistic is defined as:

CCI = −2Log

(
(1− π2)dnn+dyn π

dny+dyy
2

(1− π0)dnnπ
dny
0 (1− π1)dynπ

dyy
1

)
(33)

where all powers account for the different combinations of d days with no failures, n, or with

failures, y, thus producing four possible combinations. The probabilities are so defined:

• π0: probability of having a time t failure given no t− 1 failure: π0 =
dny

(dnn+dny)

• π1: probability of having a time t failure given a t− 1 failure: π1 =
dyy

(dyn+dyy)
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• π2: probability of having a time t failure: π2 =
(dny+dyy)

(dnn+dny+dyn+dyy)

The CC test is defined as:

CC = POF + CCI (34)

and is asymptotically distributed as a chi square with two degrees of freedom.

The TBFI and TBF tests refer to the Time Between Failure Independence and the Time Between

Failure of Haas (2001). While the TUFF checks only for the first exceedance, thus possibly leaving

important information out of the analysis, the TBFI of Haas (2001) considers all exceedances.

Asymptotically distributed as a chi square with I degrees of freedom, the TBFI test is defined as:

TBFI = −2
I∑
i=1

Log

 p(1− p)di−1(
1
di

)(
1− 1

di

)di−1
 (35)

As a crucial modification with respect to the TUFF test, d is enriched with the subscript i, which

accounts for the number of exceedances between i and i− 1. As for the CC test, the POF can be

used jointly with the TBFI test to define the TBF statistic:

TBF = POF + TBFI (36)

which is asymptotically distributed as a chi square with I + 1 degrees of freedom.

As concerns the CVaR, three backtests are performed. First, the average predicted excess loss

beyond the VaR based on the left (Equation (37)) and right (Equation (38)) tail of the distribution:

Lexp =
1

N

N∑
t=1

[
CVaRα

t,T −VaRα
t,T

]
I[ST<Kα

t,T ]
(37)

Lexp =
1

N

N∑
t=1

[
CVaRα

t,T −VaRα
t,T

]
I[Kα

t,T>ST ]
(38)

is compared with the average realized loss conditional on the observation of a VaR exceedance:

Lreal =
1

N

N∑
t=1

[
−(ST − St)−VaRα

t,T

]
I[ST<Kα

t,T ]
(39)

When computing the expected excess loss, the choice of performing a conditional test has the
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objective to remove the effect of variation and estimation error in the VaR through time. The mean

conditional expected excess loss is compared with the mean conditional realized loss exceeding the

VaR by conducting a nonparametric Mann and Whitney (1947) test on the difference between the

two means.16 If the null hypothesis of a zero difference between the two means cannot be rejected,

the option-implied CVaR forecasts future losses in a consistent way.

Second, following McNeil et al. (2015), the null of a correctly calibrated CVaR is tested against the

alternative of a risk underestimation through the following function:

Kt = h
(α)
1 (VaRα

t,T ,CVaRα
t,T , Lt) =

(
Lt − CVaRα

t,T

CVaRα
t,T

)
· It (40)

where Lt is the realized loss and It is the indicator function of a VaR exceedance. Under the

null, the expected value of Kt conditional to the information up to time (t − 1) is equal to zero,

E(Kt|Ft−1) = 0. Under the alternative is strictly positive, E(Kt|Ft−1) > 0, thus suggesting that

the CVaR has a negative bias.

Third, since the VaR and the CVaR are jointly elicitable (see Lambert et al. (2008) and Fissler

et al. (2015)), the joint calibration function:

St = h
(α)
2 (VaRα

t,T ,CVaRα
t,T , Lt) =

It
CVaRα

t,T

− α (41)

enables to test the null hypothesis of a correct joint calibration of the VaR and CVaR. Rejection of

the null implies that the VaR and/or the CVaR underestimate risks. As for Kt, St is expected to

behave as a martingale difference (i.e. E(Kt|Ft−1) = 0) under the null and to be strictly positive

under the alternative (i.e.: E(Kt|Ft−1) > 0).

Table 6 presents basic results for the nine aforementioned VaR tests (Bin, TL, POF, TUFF,

CCI, CC, TBFI and TBF) for the entire set of risk measures. Divided in weekly and monthly

estimates, and for both tails of the distribution the table reports the acceptance/rejection results

for the two option-implied risk measures (MF and BS) and the physical benchmark (FHS). For the

option-implied risk measures the left (right) value refers to the (left) right tail of the distribution

16In risk management, forecasted losses smaller/larger than the realized ones are both undesirable. The
former ones imply a risk underestimation and hence an inadequate capital protection, the latter ones induce
an inefficient allocation of capital resources.
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computed with Put (Call) options. For all tests: R means rejection and A acceptance. The only

exception is the TL test which has three possible outcomes G (green), Y (yellow) and R (red).

As shown in the upper part of Table 6, the weekly MF VaR based on the left tail of the

distribution performs very well in all tests and across all levels of risk (1%, 2.5% and 5%). This

confirms an accurate risk evaluation of the MF option-implied risk measures for short investment

horizons and at multiple risk levels. To further investigate over these results, Tables 7, 8 and 9

present detailed statistics on all proposed tests, for both tails of the distribution and for both short

(weekly) and long (monthly) time horizons17. Table 7 details on the validity of the traffic light test

for the MF option-implied VaR at all levels and for both short and long time horizons. Differently

than in the previous table, here L (R) refers to the left (right) tail of the distribution. For the

traffic light table, “Probability” is the cumulative probability of observing up to the corresponding

number of failures, “Type I” is the probability of observing the corresponding number of failures

or more if the model is correct and “Increase” is the eventual increase in the scaling factor. Both

at short and long time-horizons the left tail risk measures perform well, confirming and extending

the results of Table 6. While the left tail provides reliable risk forecasts, the right one might be

suboptimal for the highest α level. At 1% and 2.5% in fact, the traffic light test is red and yellow,

thus showing a discrepancy between expected and realized exceedances. A possible explanation for

the suboptimal performances is the lower amount (with respect to Put options) of liquid weekly

Call options18. Regarding the Bin, POF, TUFF and CC tests, Table 8 shows that for the left tail

of the distribution and at all levels, the p-values are almost substantially larger that the threshold

level of 5%, thus corroborating the statistical soundness of the MF estimates. Results confirm the

lower ability of Call options in capturing the risk into the right tail of the distribution (compared

with Put options for the left tail of the distribution).

To corroborate the results, Figure 3 presents the time series of left tail MF option-implied VaR

plotting, with a black star, the exceedances. Graphically, for α=5% two exceedances occur at close

dates at the end of 2014, thus potentially undermining the time independence among the VaR

exceedances. Nevertheless, the detailed results of the independence (CCI) test (see first three rows

of Table 9) show that the p-values (4th column) are always larger than 5%. As a consequence, the

17While omitted, we also performed the analysis on the parametric B&S. All results are available upon
request to the authors.
18One could rely on the Put-Call parity or use extrapolation techniques to alleviate this problem.
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null of time-independent exceedances cannot be rejected at 95% confidence level. As it concerns

the CVaR, the upper left part of Table 10 presents the backtesting results on the weekly MF CVaR

based on the left tail of the distribution. Being conditional on the occurrence of a VaR exceedance,

the p-values of the Mann-Whitney test (ρMW ) and of the two tests proposed by McNeil (ρK and ρS)

are not available at α = 1%, as no VaR exceedances occurred at the lowest risk level (see Figure 3).

At α = 2.5% and 5%, the results of all tests suggest that the MF CVaR estimates provide good

forecasts of future risks.

On a monthly basis, Figure 4 depicts the monthly MF VaR exceedances for the left tail of the

distribution. Results are supported by Tables 7, 8 and 9 which present detailed statistics on the

tests proposed in Table 6 but at a monthly time horizon. Even taking into account the number

of missing data and for both tails of the distribution, the proportion of exceedances is always

below the corresponding α level (see the first three rows in the 1st column of Table 10). At

α = 5%, 10%, 15%, the proportion of exceedances equals 1.56%, 4.68% and 6.25% for the left tail

and 2.34%, 4.58%, 6.25% for the right one. The proposed VaR risk measures are then conservative

forecasts of the potential losses. This result is also reflected in the p-values of the Binomial and POF

tests (see the first six rows in the 4th column of Table 8). The discrepancy between the proportion

of exceedances and their corresponding theoretical values drives down the p-values of the Binomial

and POF tests, whose null hypothesis are rejected when the risk level is 10%. Conversely, at

α = 5% and 15% the difference between the proportion of realized and theoretical exceedances is

not statistically significant, and the null of correct coverage cannot be rejected at 95% confidence

level. According to all the other tests and across each risk level, the monthly MF VaR correctly

predicts risk. The lower left part of Table 10 presents backtesting results on the monthly MF

CVaR based on the left tail of the distribution. When α equals 5% and 10%, the null hypothesis

cannot be rejected at 99% confidence level. The estimated CVaR thus provide an adequate capital

protection. Conversely, at α = 15% the null is rejected. Being a two-tailed test, the MannWhitney

U test does not provide information on whether the CVaR is under/over-estimating the actual

losses. At α = 15%, the difference between the sample means of the expected and the realized

losses is large and positive (i.e. 25.57$). This result implies that the option-implied CVaR is a

conservative risk metric and is overestimating future losses at that confidence level. The lower left

part of Table 10 presents backtesting results on the monthly MF CVaR based on the right tail of
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the distribution. For the right tail of the distribution, and at each risk level, the null hypothesis

cannot be rejected at 95% confidence level, thus indicating that the CVaR correctly predicts future

losses. When performing the bootstrap hypothesis tests on Kt and St, the p-values (see 4th and

5th columns) ρK and ρS , are always sufficiently high to fail to reject the null hypothesis at 95%

confidence level. In other words, for both tails of the distribution there is no evidence that the

CVaR alone and the CVaR and VaR jointly are affected by negative biases. The right upper part of

Table 10 reports backtesting results of the weekly B&S CVaR based on the left and right tails. At

α = 1% and 2.5%, no exceedances occur; hence, the conditional CVaR backtests deliver no results.

At α = 5%, the proportion of the exceedances (0.63%) is much lower than its theoretical value

(5%). The expected excess losses are substantially lower than the realized ones, thus suggesting

that the B&S CVaR may underestimate risk. Nevertheless, being this conclusion based on just one

VaR exceedance, the statistical power is not sufficiently high to assess that in general the weekly

B&S CVaR forecasts risks in an inadequate way.

The right lower part of Table 10 reports the same backtesting statistics for the B&S CVaR and

for both tails of the distribution at a monthly and weekly investment horizon. For α = 5% and

10%, the proportion of exceedances (upper part of 6th column) is always lower under the B&S

assumption than the MF approach. At all risk level, the proportion of VaR exceedances (middle

part of 6th column) under the B&S approach is always larger. The B&S methodology then delivers

less conservative risk forecasts. The MannWhitney U test based on the left tail of the distribution

always rejects the null hypothesis at 95% confidence level. Compared to the MF methodology and

for α = 15%, the difference between the expected and the realized losses is close enough to zero

(i.e. 2.40$) to fail to reject the null. Based on the right tail of the distribution, the null of a

correctly specified risk metric cannot be rejected at any risk level. As it concerns the McNeil tests,

ρK and ρS (see 9th and 10th columns) are substantially lower than those obtained under the MF

methodology. Nevertheless, for both tails of the distribution at 95% confidence level, the p-values

suggest that the B&S CVaR and the B&S VaR and CVaR jointly do not underestimate risk.
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To conclude the analysis we present backtesting results for the statistically-based mea-

sures estimated with the GJR-GARCH-FHS model presented in Section 5 The lower part

of Table 6 presents backtesting results for the weekly (top) and monthly (bottom) VaR.

Confirming the previous findings, the obtained results suggest that the FHS CVaR alone

and the FHS VaR and CVaR jointly do not underestimate risk.. Confirming Brownlees

et al. (2011) the statistical-based VaR works well at short time horizon and for almost all

tests in consideration. There are in fact no rejections at the weekly horizon. Things change

at longer time horizons. Monthly VaR are rejected at 5% for the POF test and at 10% for

the TBF. As it concerns the VaR, at α = 5% and 15%, the proportion of the exceedances

(see the 1st column of Table 6) is slightly higher compared to the VaR backtesting results

in the left tail under the option-implied methodology, both when using the MF and the

B&S approaches (see 1st and 6th columns of Table 10). The VaR risk forecasts are rejected

in just two cases (at α = 5% the null of the POF test is rejected and at α = 10% the null

of the TBF test is rejected).

7 Conclusion

This article presents and compares backtesting results at short and long time horizons for

the S&P 500 Index VaR and CVaR estimated under two different methodologies, namely

the option-implied and the statistically-based approaches. Option-implied risk measures

are naturally forward-looking, economically grounded and react quickly to new market sce-

narios. Statistically-based risk measures are estimated using a GJR-GARCH-FHS model.

At short time horizons, both the option-implied and the statistically-based risk measures

perform similarly. At long time horizons, the option-implied risk measures perform well

while the statistically-based risk metrics are not always reliable. Option-implied risk mea-

sures can thus be seen as possible alternatives to statistically-based risk measures. Option-

implied risk measures can be useful to regulators, single companies and investors. Regula-

tors can quantify the risk of a firm without needing to know what is on (and off) its balance

sheet. Firms can either gain an overview of their perception among the investors or derive

market-based risk metrics to be compared with those obtained by internal models. Finally,

investors can evaluate the risk of their existing/potential investments.
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9 Tables

Weekly CVar and VaR estimates
Model Left tail Right tail

MF CVaR Mean Median Max Min St.Dev Mean Median Max Min St.Dev
α = 5% 95.38 87.31 411.21 52.26 42.41 52.27 50.22 181.23 34.30 15.91
α = 2.5% 141.07 120.87 755.90 73.71 77.79 60.86 57.34 225.54 36.21 19.63
α = 1% 229.32 202.17 863.21 98.16 105.08 79.20 72.11 711.79 44.21 53.90
MF VaR Mean Median Max Min St.Dev Mean Median Max Min St.Dev
α = 5% 62.89 56.14 300.89 32.61 33.10 39.81 37.25 126.79 24.30 12.86
α = 2.5% 99.62 84.20 395.89 45.98 73.31 46.24 43.08 171.79 25.21 16.10
α = 1% 193.41 155.74 478.87 65.98 95.84 53.71 51.63 114.11 30.21 13.80

BS CVaR Mean Median Max Min St.Dev Mean Median Max Min St.Dev
α = 5% 106.20 96.93 469.69 60.68 46.77 84.06 80.39 241.06 56.15 20.30
α = 2.5% 164.46 153.48 630.16 91.73 63.68 83.43 79.52 240.95 56.11 20.13
α = 1% 250.07 239.16 627.50 136.42 71.74 83.91 80.30 236.80 56.38 20.08
BS VaR Mean Median Max Min St.Dev Mean Median Max Min St.Dev
α = 5% 85.94 77.93 393.21 48.61 39.21 45.49 43.08 156.79 30.21 13.29
α = 2.5% 141.53 132.11 543.21 78.16 55.69 54.90 52.23 171.79 35.21 14.47
α = 1% 223.77 213.48 570.89 121.47 65.33 75.47 72.19 206.79 51.30 17.30

Monthly CVar and VaR estimates
Model Left tail Right tail

MF CVaR Mean Median Max Min St.Dev Mean Median Max Min St.Dev
α = 15% 127.40 121.49 297.56 60.61 43.39 85.07 79.01 237.94 46.37 30.16
α = 10% 152.99 146.70 340.61 67.16 53.67 92.55 86.41 259.83 52.64 32.27
α = 5% 210.48 206.31 461.43 96.24 73.70 108.45 102.06 331.31 61.00 39.33
MF VaR Mean Median Max Min St.Dev Mean Median Max Min St.Dev
α = 15% 67.91 64.66 192.44 26.67 26.96 61.07 55.42 172.56 32.20 22.81
α = 10% 95.94 91.92 253.11 36.96 41.22 68.89 63.81 171.89 34.04 22.69
α = 5% 155.14 145.16 450.26 61.64 67.23 84.00 78.10 217.56 44.25 29.18

BS CVaR Mean Median Max Min St.Dev Mean Median Max Min St.Dev
α = 15% 130.19 125.22 300.89 56.34 46.42 84.34 77.32 228.76 49.37 28.51
α = 10% 159.77 154.48 358.41 70.43 54.78 96.54 91.35 261.76 56.99 31.35
α = 5% 217.99 213.86 489.25 100.56 68.90 126.46 120.92 333.31 71.37 38.46
BS VaR Mean Median Max Min St.Dev Mean Median Max Min St.Dev
α = 15% 86.80 83.34 223.11 33.12 34.75 67.93 62.79 167.56 41.88 20.69
α = 10% 117.00 113.36 288.11 48.12 44.05 84.11 79.83 212.56 51.88 25.14
α = 5% 177.63 173.95 407.18 78.12 59.42 117.87 113.01 297.56 67.20 34.50

Table 1: Summary statistics of all option-implied risk measures for both short (weekly) and
long (monthly) time horizons and for both tails of the distribution. MF (BS) CVaR refers
to the Model Free (Black & Scholes) CVaR computed with nonparametric (parametric) α.
The same holds for the VaR. Weekly estimations use weekly options while the monthly
estimations use monthly options.
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Summary statistics for ∆α=CVaRα-VaRα.

Weekly Estimations
Left Tail Model-Free Black and Scholes

CVaR-VaR Min Max Mean Median Min Max Mean Median
α = 1% 2.00 122.51 38.13 36.66 14.95 56.61 26.30 25.23
α = 2.5% 3.00 140.00 41.44 38.00 13.57 86.95 22.92 21.44
α = 5% 14.37 123.00 32.49 30.00 12.40 76.48 20.26 18.67

Right Tail Model-Free Black and Scholes
CVaR-VaR Min Max Mean Median Min Max Mean Median
α = 1% 7.50 610.02 25.48 20.00 5.03 30.01 8.44 7.97
α = 2.5% 6.66 53.75 14.61 13.75 11.56 69.16 28.53 27.16
α = 5% 6.66 54.44 12.46 11.70 21.26 84.27 38.57 36.54

Monthly Estimations
Left Tail Model-Free Black and Scholes

CVaR-VaR Min Max Mean Median Min Max Mean Median
α = 5% 2.36 150 55.34 49.42 22.44 82.07 40.35 40.24
α = 10% 27.35 142.35 56.08 54.55 22.18 84.99 41.65 41.17
α = 15% 28.51 129.45 59.48 49.43 23.22 88.03 43.14 42.66

Right Tail Model-Free Black and Scholes
CVaR-VaR Min Max Mean Median Min Max Mean Median
α = 5% 11.94 114.24 24.78 22.51 10.07 75.80 20.84 19.05
α = 10% 11.53 117.68 23.67 21.36 11.79 83.53 24.01 21.58
α = 15% 12.31 59.94 24.23 23.03 13.22 90.35 26.94 24.48

Table 2: Summary statistics of ∆α=CVaRα-VaRα for both short (weekly) and long (monthly)
time horizons and for both tails of the distribution. MF(BS) CVaR refers to the Model Free
(Black & Scholes) CVaR computed with nonparametric (parametric) α. The same holds for
the VaR. Weekly estimations use weekly options while the monthly estimations use monthly
options.
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Number of missing observations for the weekly and monthly esti-

mates.

Weekly Monthly
Model-Free approach α = 1% α = 2.5% α = 5% α = 5% α = 10% α = 15%

% missing observations (Left) 1.26 0.00 0.00 6.25 9.38 13.28
% missing observations (Right) 1.88 1.25 18.23 9.38 7.81 12.50

Black and Scholes approach α = 1% α = 2.5% α = 5% α = 5% α = 10% α = 15%
% missing observations (Left) 0.00 0.00 0.00 0.78 0.00 3.13

% missing observations (Right) 0.00 0.00 2.52 1.56 1.56 4.69

Table 3: Proportion of missing observations for the weekly and monthly estimates extracted
with the model free methodology (upper part) and the Black and Scholes approach (lower
part) for both the left and right tails of the distribution.

Left and right tail - Summary statistics for Γt = KαMF

t −KαBS

t .

Γt Mean Median Min Max
Left tail (W) -0.0156 -0.0072 -0.2026 0.2225
Right tail (W) 0.0201 0.0113 -0.1790 0.2513
Left tail (M) -0.0035 -0.0096 -0.3390 0.2430
Right tail (M) 0.0284 0.0229 -0.2027 0.2481

Table 4: Summary statistics for Γt = KαMF

t −KαBS

t where αMF
t represents the time t Model

Free estimations and αBS
t the relative Black and Scholes based estimations. The upper/lower

part (W)/(M) refers to the weekly/monthly estimations.
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2005-2015 S&P 500 Index GJR-GARCH-FHS Parameters

Year ω α β γ Persistence
2005 2.43e-06 2.20e-13 0.91 0.15 0.98
2006 1.56e-06 1.16e-13 0.92 0.15 0.99
2007 1.16e-06 3.35e-10 0.93 0.12 0.99
2008 1.24e-06 1.24e-13 0.93 0.12 0.99
2009 1.21e-06 1.37e-13 0.93 0.13 0.99
2010 1.15e-06 1.24e-13 0.93 0.12 0.99
2011 1.25e-06 1.10e-13 0.93 0.12 0.99
2012 1.68e-06 2.45e-10 0.91 0.14 0.98
2013 1.85e-06 9.54e-14 0.91 0.15 0.98
2014 2.08e-06 1.43e-13 0.90 0.17 0.98
2015 2.37e-06 2.45e-13 0.90 0.15 0.98

Table 5: Yearly means of the physical GJR-GARCH-FHS parameters θt = f(ω, α, β, γ)
calibrated each third Thursday of the month - from January 20, 2005 to December 17, 2015
- on the S&P 500 Index log returns using the Pseudo Maximum Likelihood (PML) approach
and 10 years of daily log-returns (up to 1995). The GJR-GARCH-FHS model under the
physical measure and the persistence are defined as:

log

(
St
St−1

)
= rt = a+ ρrt−1 + εt

εt =
√
σ2
t zt

σ2
t = ω + βσ2

t−1 + αε2t−1 + γ1[εt−1 < 0]ε2t−1

Persistence = α + β +
γ

2
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Backtesting results

Weekly VaR estimates
Model α Bin TL POF TUFF CCI CC TBFI TBF

MF 1% A/R G/R A/R A/A A/A A/R A/R A/A
MF 2.5% A/R G/Y A/R A/A A/A A/R A/A A/A
MF 5% A/A G/G A/A A/A A/A A/A A/A A/A

Model α Bin TL POF TUFF CCI CC TBFI TBF
BS 1% A/A G/G A/A A/A A/A A/A A/A A/A
BS 2.5% R/R G/G A/R A/A A/A A/R A/A A/A
BS 5% R/R G/G A/R A/A A/A R/R A/A A/A

Monthly VaR estimates
Model α Bin TL POF TUFF CCI CC TBFI TBF

MF 5% A/A G/G A/A A/A A/A A/A A/A A/A
MF 10% R/A G/G R/A A/A A/A A/A A/A A/A
MF 15% A/A G/G A/A A/A A/A A/A A/A A/A

Model α Bin TL POF TUFF CCI CC TBFI TBF
BS 5% A/A G/G R/R A/A A/A R/A R/A R/R
BS 10% A/A G/G A/A A/A A/A A/A A/A A/A
BS 15% A/A G/G A/A A/A R/R R/R A/A A/A

Weekly VaR estimates
Model α Bin TL POF TUFF CCI CC TBFI TBF
FHS 1% A G A A A A A A
FHS 2.5% A G A A A A A A
FHS 5% A G A A A A A A

Monthly VaR estimates
FHS 5% A G R A A A A A
FHS 10% A G A A A A A R
FHS 15% A G A A A A A A

Table 6: Backtesting results of the Model Free (MF), Black and Scholes (BS) and Filtered
Historical Simulation (FHS) VaR computed for the left (right) tail using Put (Call) options.
As presented in the test, we only report backtesting results for the left tail FHS. For each
section, the upper (lower) part refers to the short (long)-time horizon estimations. On a
weekly basis (upper part), the backtesting results are reported for the left tail only; whereas
on a monthly basis (lower part), the first value refers to the left tail and the second one to the
right one. The first two columns refer to the model in use and the relative confidence level.
The third column, Bin, refers to the Binomial test of Jorion (2011). The fourth column, TL,
refers to the Traffic Light test proposed by the Basel Commitee (1996). The fifth and sixth
columns, POF and TUFF, refer to the Proportion Of Failure and Time Until First Failure
tests of Kupiec (1995).
The seventh and eight columns, CCI and CC, refer to the Conditional Coverage Indepen-
dence and Conditional Coverage of Christoffersen (1998).
The ninth and tenth columns, TBFI and TBF refer to the Time Between Failure Indepen-
dence and Time Between Failure of Haas (2001). As described in Section 6, aside for the
TL that has 3 outcomes (green, yellow and red, or G, Y, R), all other test are binary and
produces either acceptances, A, or rejections, R.
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Weekly VaR estimates
MF VaR Traffic Light Probability Type I Increase
α = 5% (L) Green 0.0981 0.95 0.00
α = 2.5% (L) Green 0.2473 0.91 0.00
α = 1% (L) Green 0.2112 1.00 0.00

MF VaR Traffic Light Probability Type I Increase
α = 5% (R) Green 0.8872 0.1978 0
α = 2.5% (R) Yellow 0.9972 0.0062 0.8652
α = 1% (R) Red 1 4.39e-06 1

Monthly VaR estimates
MF VaR Traffic Light Probability Type I Increase
α = 5% (L) Green 0.0666 0.9815 0
α = 10% (L) Green 0.0195 0.9929 0
α = 15% (L) Green 0.0603 0.9686 0

MF VaR Traffic Light Probability Type I Increase
α = 5% (R) Green 0.6719 0.4907 0
α = 10% (R) Green 0.2859 0.8157 0
α = 15% (R) Green 0.0559 0.9711 0

Table 7: Detailed backtesting results of the Traffic Light test for the MF VaR based on the
left (L) and right (R) tail of the distribution at weekly and monthly time horizon. Probability
is the cumulative probability of observing up to the corresponding number of failures, Type
I is the probability of observing the corresponding number of failures or more if the model
is correct and Increase is the eventual increase in the scaling factor
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Weekly VaR estimates
Left tail Right tail

MF VaR Bin Z Score P Value Bin Z Score P Value
α = 5% Accept -1.4236 0.077281 Accept 1.0301 0.1515
α = 2.5% Accept -0.9936 0.1602 Reject 3.1282 0.0008
α = 1% Accept -1.2553 0.1047 Reject 6.8214 4.50e-12
MF VaR POF Likelihood Ratio P Value POF Likelihood Ratio P Value
α = 5% Accept 2.4559 0.11708 Accept 0.9501 0.3297
α = 2.5% Accept 1.2023 0.27286 Reject 6.8802 0.0087
α = 1% Accept 3.1357 0.0766 Reject 20.8610 4.93e-06
MF VaR TUFF Likelihood Ratio P Value TUFF Likelihood Ratio P Value
α = 5% Accept 3.5780 0.0585 Accept 0.0563 0.8124
α = 2.5% Accept 1.8368 0.1753 Accept 0.0096 0.9219
α = 1% Accept – – Accept 0.5292 0.4669
MF VaR CC Likelihood Ratio P Value CC Likelihood Ratio P Value
α = 5% Accept 2.6651 0.2638 Accept 2.3127 0.3146
α = 2.5% Accept 1.2539 0.5342 Reject 8.2606 0.0161
α = 1% Accept 3.1357 0.2085 Reject 22.2510 1.47e-05

Monthly VaR estimates
Left tail Right tail

MF VaR Bin Z Score P Value Bin Z Score P Value
α = 5% Accept -1.6189 0.05274 Accept 0.1734 0.4312
α = 10% Reject -2.0647 0.01947 Accept -0.7493 0.2268
α = 15% Accept -1.638 0.05071 Accept -1.6708 0.0474
MF VaR POF Likelihood Ratio P Value POF Likelihood Ratio P Value
α = 5% Accept 3.4707 0.0624 Accept 0.0294 0.8638
α = 10% Reject 5.3160 0.0211 Accept 6.6007 0.4338
α = 15% Accept 3.0313 0.0816 Accept 3.1611 0.0745
MF VaR TUFF Likelihood Ratio P Value TUFF Likelihood Ratio P Value
α = 5% Accept 1.6679 0.1965 Accept 0.1045 0.7464
α = 10% Accept 0.2846 0.59367 Accept 0.2074 0.6488
α = 15% Accept 0.6252 0.4291 Accept 0.6438 0.4223
MF VaR CC Likelihood Ratio P Value CC Likelihood Ratio P Value
α = 5% Accept 3.5415 0.1702 Accept 1.1023 0.5763
α = 10% Accept 5.7666 0.0559 Reject 6.0712 0.0480
α = 15% Accept 4.1933 0.1228 Accept 3.1666 0.2053

Table 8: Detailed backtesting results of the Bin, TUFF, CC an POF tests for the MF VaR
based on the left and right tail of the distribution at short (weekly) and long (monthly) time
horizon.
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Left tail Weekly Model-Free Weekly Black and Scholes
% It Lexp Lreal ρK ρS % It Lexp Lreal ρK ρS

α=1% 0.00 – – – – 0.00 – – – –
α=2.5% 1.26 26.77 10.89 0.88 1.00 0.00 – – – –
α=5% 2.52 29.61 21.16 0.85 1.00 0.63 19.46 44.11 0.10 1.00

Right tail Weekly Model-Free Weekly Black and Scholes
% It Lexp Lreal ρK ρS % It Lexp Lreal ρK ρS

α=1% 6.29 23.37 16.54 0.66 0.01 1.26 6.12 29.01 0.13 0.23
α=2.5% 6.29 12.51 24.04 0.08 0.03 5.03 26.33 17.09 0.85 0.12
α=5% 5.66 10.67 21.64 0.03 0.18 6.92 39.91 19.79 0.98 0.41

Left Tail Monthly Model-Free Monthly Black and Scholes
% It Lexp Lreal ρK ρS % It Lexp Lreal ρK ρS

α = 5% 1.56 43.22 46.26 0.35 1.00 0.78 38.84 46.81 0.11 1.00
α = 10% 4.68 50.90 46.77 0.43 1.00 2.34 44.32 52.38 0.14 1.00
α = 15% 6.25 55.99 30.42 0.92 1.00 7.03 43.75 41.34 0.41 1.00

Right Tail Monthly Model-Free Monthly Black and Scholes
% It Lexp Lreal ρK ρS % It Lexp Lreal ρK ρS

α = 5% 2.34 30.07 55.96 0.87 1.00 3.91 22.30 26.11 0.12 0.72
α = 10% 4.68 26.92 41.73 0.96 1.00 5.46 24.73 57.14 0.15 1.00
α = 15% 6.25 23.09 37.79 0.88 1.00 7.81 28.93 55.86 0.09 0.96

Table 10: The upper portion of the table reports the backtesting results of the weekly option-
implied VaR and CVaR under the MF and B&S methodology based on the left and right
tail of the distribution. The lower portion of the table reports the backtesting results of the
monthly option-implied VaR and CVaR under the MF and B&S methodology based on the
left and right tail of the distribution.
The first column reports the proportion of MF VaR exceedances, It, which equals the num-
ber of exceedances, computed as in Equations (28)-(29), divided by the total number of
observations, respectively.
The second and the third columns report the average expected, Lexp, and realized, Lreal,
excess losses conditional on a VaR exceedance expressed in $ under the MF and B&S
approach, respectively. The average expected loss is computed as the difference be-
tween the option-implied CVaR and VaR, conditional on a VaR exceedance, Lexp =
1
N

∑N
t=1 [CVaRα,t − VaRα,t] I[ST<Kα

t,T ]
, where It is the indicator function of a VaR exceedance.

The average excess realized loss is defined as Lreal = 1
N

∑N
t=1 [−(ST − St)− VaRα,t] I[ST<Kα

t,T ]
,

where ST is the price of the underlying at time T (i.e. one month after time t), St is the
underlying price at time t and It is the indicator function of a VaR exceedance.
The fourth and fifth columns report the p-values of the bootstrap hypothesis tests on Kt and
St, ρk and ρS,respectively. The same statistics are presented in the 6th-10th columns when
using the B&S method.
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Option-implied MF and B&S CVaR and VaR
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Figure 1: Time series of model-free (MF) and Black and Scholes (B&S) weekly CVaR and
VaR. The three upper panels show the model-free (MF) CVaR (thick blue) and VaR (red)
at level α=1% (top), 2.5% (central), 5% (bottom). The three lower panels show the Black
and Scholes (B&S) CVaR (thick blue) and VaR (red) at level α=1% (top), 2.5% (central),
5% (bottom).
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Figure 2: Time series of model-free (MF) and Black and Scholes (B&S) monthly CVaR and
VaR. The three upper panels show the model-free (MF) CVaR (thick blue) and VaR (red)
at level α=5% (top), 10% (central), 15% (bottom). The three lower panels show the Black
and Scholes (B&S) CVaR (thick blue) and VaR (red) at level α=5% (top), 10% (central),
15% (bottom).
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Backtesting results of the option-implied MF VaR
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Figure 3: Time series of VaR and relative left tail VaR exceedances for the model-free (MF)
weekly VaR at α=1% (top), 2.5% (central), 5% (bottom). VaR exceedances occur whenever
the Put option contract at level α expires in-the-money (see Equation (28)) and are plotted
with a black star (*).
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Figure 4: Time series of VaR and relative left tail VaR exceedances for the model-free
(MF) monthly VaR at α=5% (top), 10% (central), 15% (bottom). VaR exceedances occur
whenever the Put option contract at level α expires in-the-money (see Equation (28)) and
are plotted with a black star (*).
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